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Abstract

These are notes' for Harvard’s Computer Science 51, an undergraduate class on abstraction and
design, as taught by Professor Stephen Chong in Spring 2022.

Course description: Fundamental concepts in the design of computer programs, emphasizing the
crucial role of abstraction. The goal of the course is to give students insight into the difference between
programming and programming well. To emphasize the differing approaches to expressing programming
solutions, you will learn to program in a variety of paradigms — including functional, imperative, and
object-oriented. Important ideas from software engineering and models of computation will inform these
different views of programming.

These notes cover Professor Stuart M. Shieber’s Abstraction and Design in Computation
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0.1 Logistics

Announcements

e For next time: Read chapters 1-4 in the course textbook
e Submit the reading survey, work on problem set 0

0.1.1 Course overview

We can review the syllabus. There are not very many lectures in this course. Lectures are optional and
recordings be available on Canvas.

Most of the learning occurs in the labs. Labs are small-group sessions that occur on Tuesdays and Thursdays.
Labs will be held in 114 Western Ave Rooms 2111 and 2112.

We can submit labs as often as we want, up until virtual quizzes are released on Sundays. There are nine
problem sets, two exams, and one final project.


https://book.cs51.io/
https://cs51.io/college/syllabus/

1 Introduction

Without abstraction, there are only details. And through abstraction — forgetting differences, generalizing
— that we can get control of the sheer daunting complexity of controlling a computer.

Definition 1.1 (Abstraction). Abstraction is the process of viewing a set of apparently dissimilar things as
instantiating an underlying identity.

Example 1.2. We can view a field of a hundred flowers as a set of individual flowers. For a botanist,
however, these dissimilar individuals are all instances of a type, the genus Tulipa, the tulips.

Capturing innumerable plants into a hierarchy of abstract families, genera, and species, the complexity of
plant life becomes manageable.

This book has two objectives: to introduce the reader to a broad variety of abstraction mechanisms and to
apply these abstractions to implement more elegant code.

We can think about imperative programming as a derivative of the Turing machine, where we read languages
as a procedure to change an internal state variable. These languages use state variables and for loops as
their basic abstraction methods, and notable examples include C, Python, etc.

The other paradigm of programming, functional programming, is focused on functions as parameters.

1.1 Extended example

Example 1.3 (Tiling a bathroom). We can consider the problem of finding the largest square tiling of a
28 x 20 bathroom floor. More generally, tiling an a x b bathroom floor. We can consider finding the greatest
common divisor by decrementing one from min (a,b) until we find an integer d : d|a, d|b.

There is an explicit way to write the code and a recursive definition.

There is yet a better algorithm devised by Euclid in his Elements. The simple observation is that any square
tiling of @ x b,a > b must tile b,a mod b. This is known as Fuclid’s algorithm and is much more efficient
that the countdown algorithm.

1.2 Programming as design

Euclid’s algorithm for greatest common divisor shows us that there is more than one way to solve a problem
and some ways are better than others. We can judge the quality of a solution by

e Succinctness
Efficiency
Readability
Maintainability
Provability
Testability
Beauty

All these practices are centered around design.

Definition 1.4 (Design). Design is the navigation of a space of options, generated by applicable tools, in
search of the good, as measured along multiple dimensions. For computer programming, the tools are the
abstraction mechanisms provided by a programming language.

Functions are one of these platforms for abstraction mechanisms.



Note. Functions constitute a complete universal computational mechanism. Developed from Alonzo Church’s
lambda calculus — a logical system that included functions and their application — in the absence of data
types or structures.

Turing later showed that this is equivalent to a Turing machine. This argument for two universal computa-
tional models is known as the Church-Turing Thesis.

We concentrate on the following abstraction mechanisms with the associated programming paradigms

Abstraction Programming paradigm
functions functional programming
algebraic data types structure-driven programming
polymorphism generic programming
abstract data types modular programming
mutable state imperative programming
loops procedural programming
lazy evaluation programming with infinite data structures
object dispatch object-oriented programming
concurrency concurrent programming

Table 1: Some abstraction mechanisms and paradigms

1.3 The OCaml programming language

OCaml is a multi-paradigm programming language that supports functional, imperative, object-oriented,
and other mechanisms and paradigms in the above table.

OCaml turns out to be a good pedagogical resource.



2 A Cook’s tour of OCaml

In the OCaml interactive prompt, # indicates that we can enter an OCaml expression and ;; indicates the
end of the expression. The system reads the expression, evaluates it, and prints the indication of the result,
and loops back to provide another prompt. This is why the OCaml interactive system is referred to as the
REPL.



3 Expressions and the linguistics of programming languages

One truth from linguistics is that expressive units of natural languages or ezxpressions have hierarchical
structure.

Definition 3.1 (Syntax). Characterizing what the well-formed and structured phrases of a language is
syntaz.

3.1 Specifying syntactic structure with rules

Consider expressions in English. For example, noun phrases like party, drinker, tea or putting together a
noun phrase and a noun like tea party, or putting together an adjective and noun phrase like iced tea. We
can write the rules as follows:

(nounphrase) ::= (noun), (1)
(nounphrase) ::= (adjective)(nounphrase), (2)
(nounphrase) ::= (nounphrase)(noun) (3)

The notation ::= is read as “can be composed from". The notation for presenting syntax is called Backus-Naur
form (BNF), named for John Backus and Peter Naur. We can put these together and write

(nounphrase) ::= (noun)|(adjective)(nounphrase)|(nounphrase)(noun) (4)

Definition 3.2 (Grammar). A specification of a language using rules like this is called a grammar.

Definition 3.3 (Ambiguous). We note that a word is ambiguous if it can be derived from different syntax
analyses.

For example, we have

(nounphrase) — (nounphrase)(noun) — (adjective)(nounphrase)(noun) — iced tea drinker (5)
(nounphrase) — (adjective)(nounphrase) — (adjective)(nounphrase)(noun) — iced tea drinker

(6)

Definition 3.4 (Semantics). Semantics is the characterization o the meanings of expressions on the basis
o structure.

We note that all natural languages are ambiguous and often rely on context clues like intonation and others
to derive meaning.

3.2 Disambiguating ambiguous expressions

Programming languages have syntactic structure. Consider the BNF rules for simple arithmetic expressions
from numbers and binary operations

(expr) ::= (eXpIy4y,)(Dinop)(expr, g, )| (number), (binop) ::= +| — | X |+, (number) ::==0|1]2|3| - - -

(7)

Using these rules, we can build arithmetic expressions for 3 +4 x 5. We do not, however, have intonation or
shared context to disambiguate expressions. We instead use the order of operations as convention. We refer
to this kind of priority in operators as their precedence, with higher precedence operators (x,-+) appearing
lower in the tree than lower precedence operators (+,-).

Thus 3+4 x5 # 35,3+ 4 x 5 = 23. For operators of the same precedence, we rely on the associativity of
an operator.

10



Definition 3.5 (Associativity). An operator is left associative if the operations are applied starting with
the left one. For example, —. We evaluate 5 —4 —1=(5—-4) — 1.

Other operators can be right associative, for example the ** operator in OCaml. We have 2 ** 2 ** 3 =
2 *xx (2 *xx 3).

Associativity and precedence conventions pick out the abstract structure of concrete expressions. We can
use annotations to enforce a particular structure, using parentheses to override conventional rules. Thus
(3+4) x5=35.

3.3 Abstract and concrete syntax

The right way to think about expressions is as a hierarchically structured object, often depicted as trees.

Definition 3.6 (Abstract and concrete syntax). We will use abstract syntaz for expressions qua structured
objects and concrete syntax for their linear-notated manifestations.

3.4 Expressing your intentions

It is through expressions of a programming language that programmers express intentions to a computer.
The computer interprets the expressions to carry out intentions.

In order to remember intentions of code, we will follow the fundamental principle: make your intentions
clear.

3.4.1 Commenting

The audience for comments on code is human readers. They document the intended workings of a program
for human readers.

In OCaml, comments are marked by surrounding them with delimiters (* <> *). Comments should describe
the why rather than the how of a program.

There are other aspects that can be freely employed. For example, spaces, newlines, indentations, and
variable names can be used to make intentions clear by laying out the code in a way that emphasizes its
structure or internal patterns.

11



4 Values and types

OCaml is a value-based, strongly, statically, implicitly typed, functional programming language. We will
discuss these aspects of the language.

4.1 OCaml expressions have values

The OCaml language is a language for calculating values. The process of calculating the value is evaluation.

4.1.1 Integer values and expressions

The standard arithmetic operators apply. Integer negation is ~-, a tilde and a hyphen.

A full set of built-in operators is available here in the standard library.

4.1.2 Floating point values and expressions
Real numbers are represented using floating point approximation. Floating point literals can be expressed in
decimal notation, exponents, and hexadecimal.

The floating point operators are
+., -, *. /. (8)

Note. These operators are distinct from the integers.

4.1.3 Character and string values
Text is represented as a strings of characters. Character literals are given single quotes, for example ‘a’,
‘X?’, ¢3’. Special characters are escaped with a backslash, such as the quote character ".

String literals are given in double quotes, for instance ‘‘first", ‘‘and second". They can be concatenated
with the ~ operator.

4.1.4 Truth values and expressions
There are two truth values, indicated in OCaml by literals true and false. The truth values can be operated
on with logical operators &&, ||, not for A,V,—.

The equality operator tests two values for equality and returns a boolean. There are other comparison
operators as well, like <, >, <=, >=, <> where <> is not equal.

The OCaml conditional expression follows the template
if (expr,..,) then (expr,..) else (expri,j..) (9)

where it returns (expr,_,.) if the test expression is true and (expr,,,..) if the test expression is false.

4.2 OCaml expressions have types

Every expression of the language is associated with a type, making OCaml a typed language.

OCaml is statically typed, in that the type of an expression can be determined by examining the expression
in its context. It is not necessary to run the code in which an expression occurs to determine the type of an
expression, as in a dynamically typed language like Python or Javascript.

12
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Moreover, OCaml is strongly typed, values may not be used in ways inappropriate for their type. One
consequence is that functions only apply to values of certain types and only return values of certain types.

Because of this, the system can tell the programmer when type constraints are violated before the program
is run, preventing bugs before they happen.

4.2.1 Type expressions and typings

Every type has a name and these names are given as type expressions. Each atomic type has its own name.
Some types include integers, floating point numbers, characters, strings, truth values, and units.

We can test types using the : operator, sometimes read as “the". This is called typing, and an incorrect
typing will cause the REPL to generate an error. (ie. (42 : float))

OCaml expressions are implicitly typed. Although all expressions have types, and types of expressions can
be annotated using types, the programmer doesn’t need to specify those types in general. The OCaml
interpreter can deduce the types of expressions at compile time using a process called type inference.

4.3 The unit type

() is the only value of the unit type. This will be more relevant in future chapters.

4.4 Functions are values

Functions in OCaml are first-class values, they can be passed as arguments to functions or returned as the
value of functions. Functions that take functions as arguments are referred to as higher-order functions
and the powerful programming paradigm that makes full use of this capability is higher-order functional
programming.

A functions’ type expression is formed by placing the symbol -> (read “arrow” or “t0”) between the argument
type and the output type. For example, the type of the sqrt function is float -> float, read "float arrow
float" or "float to float".

13



5 Naming and scope

5.1 Naming
Variables can be thought of as names for values. To introduce a variable, use the local naming construct:
let (var): (type) = (expryy) in (expryqgy) (10)

(var) is a variable, or name of a value of the given (type), (expr4.) is an expression defining a value, and
<exprbody> is an expression within which the variable can be used as the name for the defined value. We
say that the expression binds the name (var) to the expression (expry.) for use in (expry,,). The let
construction thus a binding construct.

Example 5.1 (Let construct). Consider

let pi : float = 3.1415 in (11)
Let expressions can be used as first class values, so they may be embedded in other let expressions to get
the effect of defining multiple names.

Note. The (type) can be omitted and OCaml can infer types, which is why we say OCaml is implicitly
typed.

5.2 Scope

Names defined in a let expression are local to the expression and unavailable outside of the body of the
expression.

Definition 5.2 (Scope). We say that the scope of the variable — that is, the code within which the variable
is available as a name of the defined value — is the body of the let expression.

Note. The scope of a local let naming does not include the definition itself (ie. let x = x + 1 in
(exXPTy,q,) is not well defined).

The rule used in OCaml (and most modern languages) is that the occurrences are bound by the nearest
enclosing binding construct for the variable. Thus, when an inner binder for a variable falls within the scope
of an outer binder for the same variable, the outer variable is inaccessible in the inner scope. In this case,
we say that the outer variable is shadowed by the inner variable.

5.3 Global naming and top-level let

OCaml provides a global naming construct as well. By leaving off the ‘in (exprbody>’ part of the let construct,
the name can continue to be used thereafter; the scope of the naming extends through the remainder of the
REPL session or to the end of the program file.

Note. This is distinct from assignment in imperative programming languages. While it may look like we
are assigning values to a variable, actually, we are creating new names for values.

Global naming is available only at the top level. A global name cannot be defined from within another
expression, for instance, the body of a local let.

14



6 Functions

Definition 6.1 (Function). A function is a mapping from an input — the argument — to an output — the
function’s value.

We make use of a function by applying it to its argument.

In Church’s lambda calculus, we simply prefix the function to its argument and instead use parentheses for
grouping. This is true in OCaml. The function merely precedes its argument without parentheses. For
example, instead of £(1), the notation is £ 1. Recall from Section 4.4 that functions (as all values) have
types, which can be expressed as type expressions using the -> operator. For instance, the successor function
has the type given by the type expression int -> int and the “evenness” function the type int -> bool.

6.1 Multiple arguments and currying

Prefix notation is only appropriate if functions take one argument. For multiple arguments, we can think
about a function £(1,2,3). We can think about f as taking one argument, returning a function that takes
the second argument, and returning a function that takes the final argument.

The function takes the three arguments one at a time. The trick was discussed by Schonfinkel (1924) and is
referred to as a currying function.

OCaml makes extensive use of currying, and language constructs facilitate its use. For example, the -> type
expression is right associative.
6.2 Defining anonymous functions
Definition 6.2 (Anomymous function). An anonymous function is a function without a name.
We can construct an anonymous function with the construct
fun (var) : (type) -> (expr) (12)

(var) is a variable name with a given (type) and output (expr). The fun construct is a binding construct.
It binds occurrences of a variable in its scope, which is the body of the fun, the expression (expr) after the
arrow.

Example 6.3 (Anonymous functions). Consider

fun x > 2 * x ;; (13)

6.3 Named functions
We can name functions with let.
Example 6.4 (Named functions). Consider
let double = fun x -> 2 * x ;; (14)
6.3.1 Compact function definitions

OCaml provides a simpler syntax. OCaml has a similar phrasing

let (vargunc)(varar) = (expr) (15)

This compact syntax for function definition is an example of syntactic sugar.

15



Example 6.5 (Compact definition). Consider the syntactic sugar:

let double x = 2 * x in (16)

6.3.2 Providing typings for function arguments and outputs
We can provide typing for the variable being defined, like

let hypotenuse : float -> float -> float = fun x -> fun y -> sqrt (x *x 2. +. y **x 2.)
(17)

and it is good practice to do for top-level definitions.

6.4 Defining recursive functions

We can consider the factorial function. For a recursive definition, we must add the rec keyword after let.

The rec keyword means that the scope of the let includes not only the body but also its definition. The code
is

let rec fact (n : int) : int = if n = O then 1 else n * fact (n - 1) (18)

6.5 Unit testing

We can assure that our code is correct through formal verification of software — proving that the code does
what we want it to do.

If we can’t have a proof, we need to test that it generates the appropriate values on a full range of test cases.
This is an approach called unit testing.

16
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7 Structured data and composite types [TO-DO]

7.1 Tuples

Definition 7.1 (Tuple). A tuple is a fixed length sequence of elements.

The value constructor for tuples is an infix comma. For example, 3, true.

The type of a pair is determined by the types of its parts. For example, we giving the types of the parts
combined using the infix type constructor *. For instance, the pair 3, true is of type int * bool (read,
“int cross bool”).

7.2 Pattern matching for decomposing data structures

The match construction is used to perform this matching and decomposition. The general form of a match
is

match <expr> with| <pattern,> -> <expr,> | <pattern,> -> <expr,> (19)

Definition 7.2 (Anonymous variable). An anonymous variable is a a variable starting with the underscore
character. This codifies the programmer’s intention that the variable not be used, and disables the warning
message.
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8 Higher-order functions and functional programming [TO-DO]
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9 Polymorphism and generic programming

Recall the map function from previous chapters. We can implement a map function for lists generically,
while still obeying the constraint that whatever type the list elements are, they are appropriate to apply the
function to.

9.1 Type inference and type variables

One solution is type inference. We can infer the type of an input and output from the definition, using
operators.

We can consider the identity function:

let id x = x ;; (20)

Because x is not involved in any applications of the definition of id, it ha no type constraints.

Definition 9.1 (Polymorphic functions and polymorphic types). A function is polymorphic if it doesn’t
have a fully instantiated type.

To express polymorphic types, we need to extend the type expression language. We can use type variables

as identifiers with a prefix quote, e.g. ’a, ’b, ’c and so forth, reading them as their corresponding Greek
letter.

9.2 Polymorphic map

We can remove the typings in the definition of map to create a polymorphic version of the function.

9.3 Regaining explicit types

We can also make the types explicit again in function definitions.

9.4 The List library

OCaml, like Python, comes with a large set of libraries. The List library contains a lot of useful abstractions
including map, fold, filter, among others. The full documentation for the List module is provided.

9.5 Weak variable types

The List module provides polymorphic hd and t1 functions for extracting the head and tail of a list.

Definition 9.2 (Weak type variables). Weak type variablesare variables that maintain their polymorphism
only temporarily, until the first time they are applied.

When a function with these weak type variables is applied to arguments with a specific type, the polymor-
phism of the function disappears.
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10 Handling anomalous conditions

On occasion, an anomaly occurs that a function can’t handle. The function can return a value that indicates
the anomaly. We will discuss how to handle these errors and anomalies.

Example 10.1 (Median values). We can consider a function that calculates the median number in a list of
integers.

There is one anomalous case: what is the median of an empty list?

10.1 A non-solution: error values

We can consider returning special error values. There are problems: it can lead to type instantiation
(replacing generalized types) and manifests in-band signaling.

In-band signaling is using valid values to indicate errors. This could raise problems.

10.2 Option types

The function can return an out-of-band None value. We can use the ostfix type constructor option to create
an option type. There are two value constructors: None and Some, which denotes an anomalous value and a
value of the base type, respectively.

10.2.1 Option poisoning
There is a problem with using options to handle anomalies. To extract values from the output of one of
these functions, we need to extract values by passing on Nones.

Definition 10.2 (Option poisoning). Option poisoning is the phenomenon that occurs when we introduce
option types. We lose the elegance of functional programming — the ability to embed function applications
with other functional applications.

10.3 Exceptions

Another solution is to raise an exception. In this case, the execution of the function simply stops — the
function cannot return a value, which is appropriate because there is no appropriate value to return.
Example 10.3. We can consider a version of nth that raises an exception.

let rec nth (Ist : ’a list) (n : int) : ’a = match lst with | [] -> raise Exit (21)

Functions that utilize this as a way to indicate errors keeps the ’a type, not a option.

10.3.1 Handling exceptions

The exception will propagate to the larger function if the error is raised in a subroutine.

If we do not want the exception to propagate to the top level, we can handle the exception ourselves with
the following construct:

try (expr) with (match) (22)

where (expr) is an expression that may raise an exception and (match) is a pattern match with one or more
branches.

Example 10.4 (Zipping lists). We can consider a zipping list. there are two cases that are unmatched in
some normal implementation, when one of the lists is empty. We simply raise an error.

20



10.3.2 Declaring new exceptions

Exceptions are first-class values of type exn. There are multiple value constructors: Exit, Failure,
Invalid_argument. We can also define new constructors like Timeout or UnboundVariable of string.

10.4 Options or exceptions

We can use either options or exceptions. This is a design decision and there is no universal correct answer.

Options are explicit and exceptions are implicit. Options indicate that anomalies might occur and handle
them. Exceptions are more concise, it doesn’t impinge on the data and does not poison any downstream use
of the data.

We can consider the rarity of errors in deciding between options or exceptions.

10.5 Unit testing with exceptions

We can use unit tests to test for exceptions. Examples are provided in this section of the textbook.

10.6 Problem set 3: Bignums and RSA encryption

This section provides background for the third problem set. Read before starting!
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11 Algebraic data types

Data types can be divided into atomic types with atomic constructors and composite types with parameter-
ized type constructors like <> * <>, <> 1list and <> option.

All of the built-in composite types allow building data structures by combining two methods:

1. Conjunction. Multiple components can be conjoined to form a composite value containing all com-
ponents

Example 11.1. For example, values of type int * float are formed as a conjunction of two compo-
nents.

2. Alternation. Multiple components can be disjoined, serving as alternatives to form a composite value
containing one of the values.

Example 11.2. Values of type int list are formed by an alternation of two components.

Definition 11.3 (Algebraic data types). Data types built by conjunction and disjunction are called algebraic
data types.

These algebraic types can be a foundational construct of the language.
OCaml inherits from its heredity the ability to define new algebraic data types as user code.
Example 11.4 (DNA bases). We can define an algebraic data type for DNA called base as follows:
type base =G IC | A | T ;; (23)
where we use vertical bars as separators.

Definition 11.5 (Variant type). This kind of type declaration defines a wvariant type, which lists a set of
alternatives.

We can then refer to values of that type once we declare the base type. We can use pattern matching on
these types as well.

We can then define the dna type. These values can be Nil, which indicates en empty sequence, and the Cons
constructor to take two arguments (uncurried so a single pair argument). We see this below:

Example 11.6 (DNA). Counsider the following type definition for DNA:

type dna = | Nil | Cons of (base * dna) ;; (24)

The Cons constructor is a pair and conjoins a base element to another dna sequence.

This type is defined recursively. Recursion is useful to define data types of arbitrary size.

11.1 Built-in composite types as algebraic types

The dna type looks like the list type built into OCaml but with base elements.

Example 11.7 (List definition). Consider the following definition for a list:

type ’a list = Nil | Cons of ’a * ’a list ;; (25)

We use these examples not to recreate these data types, violating the edict of redundancy, but to demonstrate
the power of algebraic data type definitions.
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11.2 Example: Boolean document search

This is not the first time we’ve seen algebraic data types, recall the keyword type from section 7.4.

We also recall record types. We can consider an application of this in the document type:

type document = { title : string; words : string list } ;; (26)

We can also implement a document list. We may try to query documents with particular patterns of
words. We can do this using boolean queries. This allows for different query types. We can instantiate the
idea in a variant type definition:

type query = | Word of string | And of query * query | Or of query * query ;; (27)

We can evaluate queries against a document by writing a function:

let rec eval ({title; words} : document) (q : query) : Dbool =
match q with
| Word word -> List.mem word words
| And (q1, g2) > ...
| 0r (q1, 92) -> ... ;;

Note. See the full implementation in textbook p.155. Also it is important to familiarize ourselves with the
List library.

We can simplify redundancies using the pattern construct
(pattern) as (variable). (28)

This kind of pattern pattern matches against the (pattern) as well as binding the (variable) to the
expression being matched.

We consider rewriting
let rec eval ({words; _} as doc : document) (q : query) : bool = ... (29)

Note. The complete function is specified on pages 157-158.
Note. OCaml also supports a bckwards application infix operator |> to help make code more readable.

Example 11.8 (Succ operator). The following code does the same thing:
succ 3 ;; 3 |> succ ;; (30)

and returns 4. We note that succ increments an integer.

11.3 Example: Dictionaries

A dictionary is a data structure that manifests a relationship between a set of keys and wvalues. We can
define a polymorphic dictionary given by

type (’key, ’value) dictionary = { keys : ’key list; values : ’value list } ;; (31)

This definition of dictionaries allow keys without values. This will complicate lookup functions.

We then arrive at the edict of prevention: make the illegal inexpressible.
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This edict challenges us to find an alternative structure where this mismatch between keys and values cannot
occur. Consider this definition of dictionaries as a list of pairs of keys and values:

type (key, ’value) dict_entry = { key : ‘’key; value : ’value }
and (’key, value) dictionary = (’key, ’value) dict_entry list ;; (32)

This guarantees that every dictionary is a list whose elements each have a key and a value. We cannot have
unequal keys and values.

11.4 Example: Arithmetic expressions as an algebraic type

We can use algebraic data types to capture languages. The language of simple integer arithmetic expressions
is defined by a grammar. We can express this in Backus-Naur form by

(expr) ::= (integer) | (expr,) + (expr,) | (expr,) - (expry) | . . . (33)

This is the abstract syntax of the language. We can leave precedence, associativity of operators, and
parentheses implicit.

The definition of the grammar is given trivially:

type expr = Int of int | Plus of expr * expr | Minus of expr * expr

| Times of expr * expr | Div of expr * expr | Neg of expr ;; (34)

We can define an evaluate function to evaluate the expressions.

11.5 Problem section: Mini-poker
11.6 Problem section: Walking trees
11.7 Problem section: Gorn addresses in binary search trees

11.8 Problem set 4: Symbolic differentiation

This section gives background for problem set four.
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12 Abstract data types and modular programming

We can consider a fundamental data structure, the queue.

Definition 12.1 (Queue). A queue is a collection of elements that admits of operations like creating an
empty queue, adding elements one by one, and removing them one by one, called enqueueing and dequeuing,
respectively. The common term for this regimen is first-in-first-out, or FIFO.

We can define the queue data type using the list data type.
The full implementation is on page 177 and 178.

Note. We want the data structures to not support invalid operations, like reversing a queue. We then want
to enforce restraints on the operations applicable to a data structure to preserve invariants.

The key idea to enforce invariants is to provide an abstract data type, a data type definition that provides
a concrete implementation and enforces operations that can be performed. The allowed operations are
specified in a signature.

The signature specifies an interface to using the data structure, which serves as an abstraction barrier —
that is, only the aspects of the implementation specified on the signature may be made of use.

We then arrive at the edict of compartmentalization: limit information to those with a need to know.

Example 12.2. Following the edict of compartmentalization, all a user needs to know about an implemen-
tation is the types of operations involving queues, namely enqueue and dequeue.

12.1 Modules

In OCaml, abstract data types are implemented using modules. A module is specified by placing definitions
of components between the keywords struct and end:

struct (definition;) (definitionsy) .. end (35)

where each (definition) is a definition of a type or value. Modules are named using the module construct:

module (module name) = (module definition) (36)

12.2 A queue model

We can see the queue module on page 181.

Note. Even though we can define this module, we note that nothing restricts us from using arbitrary aspects
of implementation, like reversing the queue.

We can use signatures to restrict the use of components of a module, like a type restricts the use of a value.
This restricts the types of operations that we can do.

The notation for specifying signatures is similar to modules, except we use the sig construct:

module type (module type) = sig
(definition;) (definitiony) (definitiong) .

end

where all modules of type (module type) is constrained by the definitions in the signature.
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Note. Whereas the module implementation uses the let construct, the signature uses the val construct,
which provides a name and a type, but no definition.

We can extend the analogy between signatures and types further by specifying that a module satisfies and
is constrained by a signature with notation:

module (module name) : (signature) = (module definition) (37)

12.3 Signatures hide extra components

If a module defines more components than its signature, any function or value in the module that is not
specified in the signature (and any other functions that depend on these functions or values) cannot be used.

In general, only the aspects of a module consistent with its signature are visible outside of its implementation
to users of the module. All other aspects are hidden behind the abstraction barrier.

A fundamental role of modules and their signatures is to establish these abstraction barriers so that infor-
mation about how data types happen to be implemented can’t leak out and be taken advantage of.

Examples can be seen on page 186-187 in the ORDERED_TYPE.

12.4 Modules with polymorphic components

We can use polymorphic types in our module and signature definitions.

12.5 Abstract data types and programming for change

One of the primary advantages of using abstract data types is that by hiding the data type implementations,
the implementations can be changed without affecting users of the data types.

Example 12.3. We can see an implementation of eval for queries using the Hashtbl module.

12.5.1 A string set module

This section provides an implementation of string sets.

12.5.2 A generic set signature

We consider a case where the abstraction barrier is too strict. There are cases where we want the user of
the module to have access to the implementation of the element type.

We can define slightly less abstract signatures using sharing constraints, which argument a signature with
one or more type equalities.

12.5.3 A generic set implementation

We can implement different types of sets by changing the element type.

We can package some types and related values and functions, transforming one module to another module
using functors.

Definition 12.4 (Functor). A functor is a function that maps modules to modules.
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We can consider a functor that takes a module with the ORDERED_TYPE signature and delivers a SET imple-
mentation:

module MakeOrderedSet (Elements : ORDERED_TYPE) : (SET with type element = Elements.t)

(38)
12.6 A dictionary module
Here, we implement a dictionary.
12.7 Alternative methods for defining signatures and modules
We have seen two ways to define a signature explicitly.
The first is to name the signature using module type and use the name in defining the module
module type SIG_NAME = sig . . . end ;; (39)
module ModuleName : SIG_NAME = struct . . . end ;; (40)
and the second to place an unnamed signaure directly constraining the module definition:
module ModuleName : sig . . . end = struct . . . end ;; (41)

the third way is used within OCaml’s own implementation of library modules. All components in a .m1 file
automatically constitute a module, generated by converting the first letter of the filename to uppercase.

12.7.1 Set and dictionary modules

A file for generating set modules can be packaged into a single module.

We see an implementation of this on the following few pages.

12.8 Library modules

OCaml provides many implementations of these modules discussed in the chapter in library modules.

12.9 Problem section: Image manipulation
12.10 Problem section: An abstract data type for intervals
12.11 Problem section: Mobiles

12.12 Problem set 5: Ordered collections
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13 Semantics: The substitution model

Semantics is about what expressions mean. The formal, rigorous, precise semantics of a programming
language is useful.

There are three reasons that formalizing a semantics with mathematical rigor is beneficial: mental hygiene,
interpreters, and metaprogramming.

In this chapter, we introduce a technique for giving a semantics to small subsets of OCaml. The method
of providing formal semantics we introduce is called large-step operational semantics, based on the natural
semantics of scientist Gilles Kahn.

The semantics is formal and operational because it relies on manipulations on the forms of notations and
we specify what programs evaluate to.

13.1 Semantics of arithmetic expressions
Recall the semantics of arithmetic in BNF and tree form. We write P |} v to mean expression P evaluates
to value v.

Definition 13.1 (Values). The values are the results of evaluation.

Then we have
nln (42)
where we use n to stand for any integer and the bar notation to denote the OCaml numerical encoding of
the number n.
Example 13.2 (Addition). Using this notation, we can write
P+Q
|P | m
Q47
Im+n

We can define similar rules for division and multiplication.

13.2 Semantics of local naming
The (expr) language defined in the grammar includes a local naming construct, expressed with let <> in
<>,

We will take the meaning of the local name construct to work by substituting the value of the definition for
occurrences of the variable in the body.

We use the following evaluation rule:

let x =D in B (43)
D { vp (44)

|Blz — vp] | vp (45)

Jvp (46)

where Q[z — P] represents substituting P for occurrences of = in Q.

Example 13.3 (Multiplication). We have

(x * x)[x —» 5] =5 %5 (47)
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13.3 Defining substitution

Because substitution is central in the semantics of the language, this approach to semantics is referred to as
substitution semantics.

13.3.1 Handling variable scope

We need to take care of variable scope.

13.3.2 Free and bound occurrences of variables

Definition 13.4 (Bound variables). A binding construct like let or fun binds the variable that it introduces.
The variable occurrence is said to be bound. A variable occurrence is free if it is not bound.

Example 13.5. Consider
fun x -> x +y (48)

Here, x is bound and y is free.

13.4 Implementing a substitution semantics

Here, we implement the eval function.

13.5 Problem section: Semantics of booleans and conditionals

Exercises for practice.

13.6 Semantics of function application

We can introduce anonymous functions and their application. The implementation is on page 249, but the
derivations can be a bit hairy.

13.7 Substitution semantics of recursion

Occurrences of the name definiendum in the body are properly replaced with the definiens, but occurences
in the definiens itself are not.
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14 Efficiency, complexity, and recurrences

Definition 14.1 (Efficiency). We say that some agent is efficient if it makes the best use of a scarce resource
to generate a desired output.

We are often concerned about the efficiency of our programs, but beware of premature optimization.

14.1 The need for abstract notions of efficiency

Efficiency and complexity is dependent on input and computation. We will often consider the worst-case
complezity of the algorithms we write.

14.2 Two sorting functions

We can consider insertion sort by recursively placing the element in a list in its appropriate position.
There is a merge sort algorithm that merges two lists by recursively sorting the halves.

14.3 Empirical efficiency

The recurrence relations are given by

Tis(n) =a-n?+b, Tims(n) =c-nlogn+d (49)

14.4 Big-O notation

We often talk about algorithms using big-O notation, which characterizes asymptotic behavior. We say that
g(n) € O(f(n)) = Jc€N:g(n) <c- f(n).

14.4.1 Informal function notation

We often just use n as our variable for complexity.

14.4.2 Useful properties of O
We have the following:
o feO(

f)
e g€ O(f) = g+keO(f),k-geO(f)
e fcO(Mr),ge0n),k>c = f+gecOn).

14.5 Recurrence equations

We can construct recurrence relations to talk about the number of computations required to complete a
task.

14.5.1 Solving recurrence by unfolding

There is often no closed-form solution for recurrence relations, but we can wunfold them to obtain some
closed-form solution.
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Note (Master theorem). Though we don’t cover this in the course, there are theorems that give us closed-
form solutions from recurrence relations.

14.6 Problem section: Complexity of the Luhn check

14.7 Problem set 6: The search for intelligent solutions

This is the problem set specification for the sixth homework.

31



15 Mutable state and imperative programming

The range of programming abstractions presented so far are pure, where computation is identified with the
evaluation of expressions.

Pure programs have values rather than effects. The term side effect is used for effects that impure programs
manifest while being evaluated.

In this chapter, we introduce imperative programming, a programming paradigm based on side effects and
state change. We will begin with mutable data structures and move onto imperative control structures.

15.1 References

OCaml has reference types, kind of like pointers. The constructor ref is used to construct reference types,
for example int ref, (bool -> int) ref etc.

We can create a reference to a block of memory storing the integer value 42 with the following:

let r : int ref = ref 43 ;; (50)

We note that r is an immutable name but it is a name for a block of memory that is mutable. We can
dereference and update the stored value. Consider

Ir, r := 21 (51)
Here, we dereference r with !r and we update with :=.
15.1.1 Reference operator types
We note that the dereference operator has type
(") : ’aref ->’a (52)

15.1.2 Boxes and arrows

We can visualize references using box and arrow diagrams.

The book provides some examples. We can define notions of equality.

Definition 15.1 (Structural equality). When two values have the same structure, regardless of where they
are stored in memory, these two values have structural equality.

Definition 15.2 (Physical equality). Physical equality holds when two values are the identical physical
block of memory.

15.1.3 References and pointers

There is some mapping between pointers and references. We note that differences are between memory leaks
in C. Memory is automatically reclaimed by the system by a process called garbage collection.

15.2 Other primitive mutable data types

There are two other primitive data types: mutable record fields and arrays.
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15.2.1 Mutable record fields

Recall that records are mutable. We change mutable records using <- instead of :=.

15.2.2 Arrays

Arrays can have an arbitrary number of elements all of the same type. Note that we can have

let a = Array.init 5 (fun n -> n * n) ;;
to initialize an array and we can change an entry via

a.(3) <- 0 ;;

15.2.3 References and mutation

We introduce the binary sequencing operator ; where we write P; Q means that we evaluate P (and does not

return its value) and then evaluates Q and returns the value.

We then consider a bump function.

Note. We need to avoid the use of a global variable to avoid misuse.

15.3 Mutable lists

A mutable list allows the tail of the list to be updated:

type ’a mlist = | Nil | Cons of ’a * (’a mlist ref) ;;

15.4 Imperative queues

Recall the functional queue data structure from chapter 12. We then go through implementations using list

references, two stacks, and mutable lists.

15.5 Hash tables

A hash table is a mutable dictionary. Implementation is on page 313. Note that key-value pairs are stored
in a mutable array of a given size at an index given by the hash function. We then discuss linear probing to

look at sequential locations in the event of a hash collision.
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16 Loops and procedural programming

Recall our length function from chapter 7. This was a recursive approach.

Another way to think about calculating length is to think about what one does to calculate the length. This
paradigm is called procedural programming, which emphasizes the steps in the procedure to be carried out.

One of the main benefits of the paradigm is space efficiency. OCaml supports procedural programming.
There are while loops:

while (@XPr ,ngicion) 40 (€XPTyq,) dome (56)
There are also for loops, where we can count up:
for (variable) = (expry,,,,) to (expr.,) do (expry.,) done (57)
or count down:
for (variable) = (expr

start) downto (expr, ) do (exprbody> done (58)

16.1 Loops require impurity

In a pure language, expressions always have the same value. Because the counter or iterator will change,
this is impure.

16.2 Recursion versus iteration

We can think of recursion as a stack frame where we continually add elements to a stack of suspended calls
and we evaluate when we reach length [].

16.2.1 Tail recursion

Using tail recursion, another implementation of length uses the result of the computation in the next
iteration and does not require storage for suspended computation. We do not need a stack frame.

Definition 16.1 (Tail recursion). A program is tail-recursive if the recursive invocation is the result of the
invoking call.

Note. fold_left is a tail-recursive call and fold_right is not tail-recursive.

16.3 Saving space

Procedural programming also allows us to avoid building new data structures.

16.3.1 Problem section: Metering allocations

We can determine how many allocations are going on by metering them. We introduce a module Metered
and are asked to implement the modules.

16.3.2 Reusing space through mutable data structures

By using imperative techniques, we gain access to incremented values without incurring the cost of further
storage.
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16.4 In-place sorting

An example of reducing storage requirements is by considering quicksort. Quicksort works by selecting a
pivot value. The two lists are recursively sorted and concetenated to form a final sorted list.

An implementation of this on pages 326-327.
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17 Infinite data structures and lazy programming

Combining functions as first-class values, algebraic data types, and references enables programming with
infinite data structures. We will build infinite lists (streams) and infinite trees.

17.1 Delaying computation

OCaml is an eager language. We evaluate variables and the body of a function before evaluating a function.
We can consider
let rec forever n = 1 + forever n ;; (59)

and note that this never completes evaluation. This indicates the potential utility of lazy evaluation, the
ability to delay computation until it is needed, at which the computation can be forced to occur.

Example 17.1. Conditional expressions delay evaluation until the condition is true. Moreover, a function
of a body is not evaluated until the function is applied.

Note. Some languages embraced lazy evaluation as a default, starting with Rod Burstall’s Hope language
and finding its use in the Haskell language.

We will find lazy evaluation in the creation and manipulation of infinite data structures.

17.2 Streams

There is a new algebraic data type definition for stream:

type ’a stream = Cons of ’a * ’a stream ;; (60)

We can consider making a stream of ones as follows:
let rec ones = Cons (1, ones) ;; (61)
and we can use operations on the stream ones.

Note. This works because the components of an algebraic data type has pointers to their values. We are
actually assigning the tail to point at the head, creating a cycle. We note that <cycle> appears from the
REPL.

17.2.1 Operations on streams

We can consider a definition for map on streams.

let rec smap (f : ’a -> ’b) (s: ’a stream) : (’b stream) =

match s with | Cons (hd, tl) -> Cons (f hd, smap f t1) ;; (62)

When we run this however, we are blowing the stack because we want to apply f to each element in an
infinite sequence of ones.

When calculating the result of the map, we need to generate and cons together the head of the list and the
tail of the list but the tail involves a smap.

We can consider functions as values and achieve delay of computation by taking a stream as a delayed cons,
a function from unit to the cons. We can write a new definition for streams:

type ’a stream_internal = Cons of ’a * ’a stream

and ’a stream = unit -> ’a stream_internal ;; (63)
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Then an infinite stream of ones is now defined by
let rec ones : int stream = fun () -> Cons (1, ones) ;; (64)

We can redefine head and tail functions to return lazy streams. We can redefine smap similarly given on
page 338.

17.3 Lazy computation and thunks

ecall the definition of streams:

type ’a stream_internal = Cons of ’a * ’a stream and ’a stream = unit -> ’a stream_internal ;;
(65)

Every time we want to access the head or tail of the stream, we need to rerun the function. We should be
able to avoid recomputation by remembering its value the first time it’s computed, using the remembered
value. The term for this technique is memoization.

We can encapsulate this idea in a new abstraction called a thunk, which is a delayed computation that stores
its value when forced. We implement a thunk as a mutable value (a reference) that can be in one of two
states: not yet evaluated or previously evaluated. The type definition is

type ’a thunk = ’a thunk_internal ref

and ’a thunk_internal = | Unevaulated of (unit -> ’a) | Evaluated of ’a ;; (66)

When we need to access the value encapsulated in a thunk, we use the force function. It is defined by

let rec force (t : ’a thunk) : ‘’a =

match 't with | Evaluated v -> v | Unevaluated f -> t := Evaluated (f ()); force t ;;
(67)

17.3.1 The Lazy Module

OCaml provides a module and syntactic sugar for working with lazy computation implemented through
thunks, the Lazy module.

The type of a delayed computation of an ’a value is given by ’a Lazy.t. A delayed computation is specified
not by wrapping the expression in ref (Unevaulated (fun () -> ...)) but by preceding it with the new
keyword lazy. Forcing a delayed value uses the function Lazy.force.

We can consider performing factorials:
let factlb = lazy (print_endline "evaluating 15!"; fact 15) ;; (68)
and forcing the computation, we have

Lazy.force factlb ;; (69)

We can then define infinite streams using the Lazy module:

type ’a stream_internal = Cons of ’a * ’a stream and ’a stream = ’a stream_internal Lazy.t ;;
(70)
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17.4 Application: Approximating =

We can evaluate infinite Taylor series using lazy computation. Note that

4 4 4
R R I 71
T s3T5 7" (71)

We can then write a function to convert a stream of integers to a stream of floats
let to_float = smap float_of_int ;; (72)
We can then define a stream of odd integers
let odds = smap (fun x -> x * 2 + 1) nats ;; (73)
and a stream of alternating positive and negative ones
let alt_signs = smap (fun x -> if x mod 2 = O then 1 else -1) nats ;; (74)
and finally, the stream of terms in the 7 sequence:

let pi_stream = smap2 ( /. ) (to_float (smap (( * ) 4) alt_signs)) (to_float odds) ;;

We can approximate 7 by takingf the sum of the first few elements, a partial sum

let pi_approx n = List.fold_left ( +. ) 0.0 (first n pi_stream) ;; (76)

17.5 Problem section: Circuits and boolean streams
17.6 A unit testing framework

17.7 A brief history of laziness

Lazy computation starts with Peter Landlin, observing the relationship between lists and functions.

17.8 Problem set 7: Refs, streams, and music
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18 Extension and object-oriented programming

Consider your favorite graphical user interface.

It probably contains widgets, buttons, checkboxes, testboxes, radio buttons, etc. The code is organized in a
way where each operation is a function and we can organize functions. Instead of adding the same things
each time, we can organize the code in a different way where the changes are localized. This approach to
code organization, organizing by object rather than function is referred to as object-oriented.

18.1 Drawing graphical elements

We can think of a scene as composed of a set of display elements:

type display_elt = | Rect of rect | Circle of circle | Square of square ;; (77)
where
e type rect = {rect_pos : point; rect_width : int; rect_height : int} ;;
e type circle = {circle_pos : point; circle_radius : int} ;;
e type square = {square_pos : point; square_width : int} ;;

We will use the Ocaml Graphics module. We will rename the module G for brevity.

We can draw and transform these shapes, specified on pages 361-364.

18.2 Objects introduced

If we define a data type, an abstraction, display_elt, that is a record with a single field called draw that
stores a drawing function:

type display_elt = {draw : unit -> unit} ;; (78)
Then rectangles, circles, squares, and texts are ways of building display elements with the drawing function-
ality.

Here is an example of a rectangle:

let rec (p : point) (w : int) (h : dint) : display_elt = { draw = fun () ->
G.set_color G.black; G.fill_rect (p.x - w/2) (p.y - h/2) wh } ;; (79)

We can reorganize our code in an object-oriented manner by

let rect (p : point) (w : int) (h : int) : display_elt =
let pos = ref p in let color = ref G.black in
{ draw = (fun ) ->
G.set_color (!color); G.fill_rect ((!pos).x - w/2) ((!pos).y - h/2) w h);
set_pos = (fun p -> pos := p); get_pos = (fun () -> !pos);

set_color = (fun c -> color := c); get_color = (fun () -> !color) } ;; (80)
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18.3 Object-oriented terminology and syntax

The data structure that encapsulates the bits of functionality is an object. The various components providing
functionality are methods and the state variables are instance variables.

We create an object by instantiating the class, for example, the circle class:

let circlel = circle {x = 100; y = 100} 50 ;; (81)

When we make use of a method, we invoke the method.

18.4 Inheritance

The code so far violates the edict of irredundancy. To capture commonalities, the object-oriented paradigm
allows for definition of a class expressing common aspects, from which both of the classes can inherit their
behaviors. We refer to the class or class type that is being inherited from as the superclass and the inheriting
class is the subclass.

A class type is given by the constructor

class type shape_elt = object ... end ;; (82)

The display_elt class type can inherit the methods from shape_elt by adding an additional draw method:
class type display_elt = object inherit shape_elt method draw : wunit end ;; (83)

The inherit specification works as if the contents of the inherited superclass type were copied into the
subclass type at the location in code.

We can add a variable name to the object itself, adding a parenthesized name after the object keyword.
By convention, we use this or self and invoke the methods from the superclass with something like
this#get_color.

18.5 Overriding

Inheritance in OCaml allows subclasses to override the methods in superclasses.

We introduce method! where the diacritic marks the method that we are overriding. In this case, we override
the superclass’s draw method.

18.6 Subtyping

We can define a new class type of drawable elements
class type drawable = object method draw : unit end ;; (84)
and we can redefine draw_list as
let draw_list (d : drawable 1list) : wunit = List.iter (fun x -> x#draw) d ;; (85)

where we define drawable as a supertype of display_elt. This is because anything that can be done with
drawable can be done with a display_elt.

We can use the :> operator if we want to view something as its supertype. We can do this because supertypes
have a more narrow definition.
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18.7 Problem section: Object-oriented counters
18.8 Problem set 8: Force-directed graph drawing

18.9 Problem set 9: Simulating an infectious process
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19 Semantics: The environment model

The addition of mutability that enables impure programming paradigms like imperative and procedural
programming comes at a cost. The same expression in the same context can evaluate to different values,
which makes reasoning more difficult.

19.1 Review of substitution semantics

We recall the abstract syntax of a simple functional language. We also recall a substitution semantics that
tells us what to substitute and evaluate. We will develop an environment semantics for the language in two
variants: dynamic environment semantics and a lexical environment semantics.

19.2 Environment semantics

In an environment semantics, we directly model a mapping between variables and their values, called an
environment.

A mapping from elements z,y, z to a,b, ¢ respectively is denoted by {z — a;y — b; z — ¢}. This notation
evokes OCaml’s record notation. We will use E to denote environments (mappings) and primed versions
(E',E",...) to denote other environments. Empty environments are notated by {} and the environment £
augmented to add a mapping {x — v} is denoted by E{x — v}.

We will use Euler’s function application notation E(x) to look up what an environment E maps x to.

19.2.1 Dynamic environment semantics

A substitution semantics is given by a series of rules defining judgements of how expressions evaluate to
values. In environment semantics, expressions are not evaluated in isolation. Rather, they are evaluated in
the context of an environment that specifies which variable have which values.

We define rules for P evaluating to v in environment F, written as the judgement E + P |} v.

Example 19.1. We can have

Etaln, EFP+QUEFPImEFQIalmin (86)

So far, there is no difference from substitution mechanics. The difference is that if we consider let x = D
in B, it evaluates B in an environment augmented with a new binding of x to its new value vp.

In the substitution semantics, we will have substituted away all of the bound variables in a closed expres-
sion, so no rule is needed for evaluating variables themselves. But in the environment semantics, since no
substitution occurs, we’ll need to be able to evaluate expressions that are just variables.

A full list of dynamic environment semantics rules is given on page 397.

There is some subtlety in the dynamic environment semantics. We consider lexical environment, the envi-
ronment in force when the function is defined; and the dynamic environment, the environment in force when
the function is applied.

The environment semantics presented so far augments the dynamic environment with the new binding
induced by application. This manifests a dynamic environment semantics.

For consistency with substitution semantics, we should use the lexical environment, manifesting a lexical
environment semantics.

42



19.2.2 Lexical environment semantics

We will modify the rules to provide a lexical semantics. The technique is to have functions evaluate to a
package containing the function and its lexical (defining) environment. This package is called a closure. We
notate a closure that packages a function P and its environment E as [E F P]. In evaluating a function, we
construct a closure:

Er fun x -> P [E+ fun x -> PJ. (87)
We make use of this by
Ed HP Q l} Ed |—U, [El F fun x -> BHEd H Q lLUQIEl{J) — ’UQ} FB ll B lLUB (88)

Rather than augment the dynamic environment Ey in evaluating the body, we augment the lexical environ-
ment E; extracted from the closure.

19.3 Conditionals and booleans

Recall in section 13.5, exercises asked us to develop abstract syntax and substitution semantics rules for
booleans and conditionals. We will want similar rules for environment semantics.

19.4 Recursion

The dynamic environment semantics allows for recursion due to its dynamic nature.

The lexical semantics does not benefit from ill-formed recursive functions.

19.5 Implementing environment semantics
In 13.4.2, we presented an implementation of the substitution semantics in the form of a function eval :
expr -> expr. Modifying it to follow the environment semantics requires a few simple changes.

Note that the evaluation is relative to an environment so the eval function should take an additional
argument of type env for environment. Under lexical environment semantics require expressions to evaluate
to values that include more than the pertinent subset of expressions — expressions evaluate to closures so
we need an extended notion of value in a type value.

We can define
type env = (varid * value ref) list ;; (89)
and the value type

type value = | Val of expr | Closure of (expr * env) ;; (90)

19.6 Semantics of mutable storage
We will expand our lexical environment semantics to allow for imperative programming with references and
assignment.

We add a location, which is an index or pointer to an abstract model of memory that we call the store. A
store S is a finite mapping from locations to values.

Evaluations thus are relative to a store in addition to an environment so judgements look like £, S+ P |} ---.

A semantic rule for references is

E,Stref PYE,SFPvp, S 41,8{— vp} (91)
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According to this rule, to evaluate an expression of the form ref P in environment E and store S, we
evaluate P in the environment and store, yielding value vp for P and a new store S’ (for side effects to S in
evaluation). The value for the reference is a new location ! and a new store S’ augmented so that [ maps to
vp.

We also define another rule for assignment to a reference, i.e. expressions like P:= ), which involves
evaluating P to a location [, evaluating @) to a value vg, and updating the store so [ maps to vg. The rule is

E,SEFP:=QUE,SFPULS|ESFQUvg S| (),S"{l—vo} (92)

The full set of lexical environment semantics rules are on pages 409-410.

19.6.1 Lexical environment semantics of recursion

The extended language with references and assignment is sufficient to provide a semantics for the let rec
construct. The rule is

E,St1let rec =D in B | E{z+ [}, S{l — unassigned} D[z > 'z] | vp, S’
|E{x —1},S"{l~vp}F Blz+— tz] § v, 5" | vg,S" (93)

as desired.
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20 Final project: Implementing MiniML

The final project is the implementation of a small subset of an OCaml-like language.

20.1 Overview

The language we will implement includes a small subset of constructs and has limited support for types.

We will implement a Turing-complete OCaml subset known as MiniML, in the form of an interpreter for
expressions of the language written in OCaml. This is a metacircular interpreter.

The task is divided into three sections: substitution model, dynamic scoped environment model, and exten-
sions.

20.1.1 Grading and collaboration
Projects are done individually under standard rules of collaboration. The final project will be graded on

correctness of implementation of the first two stages; design and style of submitted code; and scope of project
(including extensions).

20.2 Implementing a substitution semantics for MiniML

The abstract syntax is given by a type definition on page 418. It is also available in expr.ml.
The details of the other files can be found on page 419.

We are asked to complete stages 1-5.
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