Computer Science 181: Machine Learning

Austin Li
awliQcollege.harvard.edu

Spring 2022

Abstract

These are notes' for Harvard’s Computer Science 181, an undergraduate class on machine learning,
as taught by Professor Finale Doshi-Velez in Spring 2022.

Course description: Introduction to machine learning, providing a probabilistic view on artificial
intelligence and reasoning under uncertainty. Topics include: supervised learning, ensemble methods
and boosting, neural networks, support vector machines, kernel methods, clustering and unsupervised
learning, maximum likelihood, graphical models, hidden Markov models, inference methods, and com-
putational learning theory. Students should feel comfortable with multivariate calculus, linear algebra,
probability theory, and complexity theory. Students will be required to produce non-trivial programs in
Python.

Contents

1

2

January 25th, 2022

1.1 Logistics o . o o e e e e e e e e e e

1.2 Introduction L L e e

1.3 Taxonomy v o e e e e e e e e e
1.3.1 Supervised learning L e
1.3.2 Unsupervised learning Lo e

1.3.3 Reinforcement learning

January 27th, 2022

2.1 Regression e
2.1.1 Supervised learning oL L

2.2 Non-parametric methods L L e
2.2.1 k-nearest neighbors (A-NN)
2.2.2 Kernelized regression Lo e e

2.3 Parametric methods: linear regression oL oo
2.3.1 Biastrick e
2.3.2 Least squares loss L

2.3.3 Basisregression L Lo e e

1With thanks to Eric K. Zhang for the template.

© © © © o o @@

mailto:awli@college.harvard.edu
https://www.ekzhang.com/

February 1st, 2022

3.1 Probabilistic regression

3.1.1 The probabilistic view L
3.1.2 Matrix formo e
3.1.3 Optimal variance oL e e e e
3.1.4 The geometric perspective Lo

February 3rd, 2022

4.1 Classification L e e e
4.1.1 Parametric models for classification o 0oL
4.1.2 Objective function e
4.1.3 Hingeloss o o o e e e
4.1.4 Stochastic gradient descent L L oo

4.2 Evaluating classification L e e

February 8th, 2022

5.1 Probabilistic classification
5.2 Discriminative approach Lo e
5.3 Generative approach e e
5.3.1 Class prior o e e e e e
5.3.2 Class conditional with continuous = L Lo
5.3.3 Class-conditional with discrete = Lo
5.4 Multi-class classification e

February 10th, 2022

6.1 Model selection e e
6.1.1 Examples of challenges in model selection
6.2 Checking for generalizability
6.2.1 Using train, validation, and test split L.

6.2.2 Cross validation

6.3 Bias-variance tradeoff

6.3.1 Managing the bias-variance tradeoff oo

February 15th, 2022

7.1 Bayesian models oL e e e e
7.1.1 Posterior over parameters Lo Lo e
7.1.2 Predictive posterior L e e e e

7.1.3 Prior selection

February 17th, 2022

14
14
14
15
16
16

17
17
17
17
18
18
18

20
20
20
21
22
22
23
23

24
24
24
24
24
25
25
26

27
27
27
28
28

30

8.0.1 Deep learning today e

8.1 Deep learning models Lo e
8.1.1 EXpPressivenesso e e e e e e e e
8.1.2 Ease of computation
8.2 Additional architecture L.
8.3 More architectures L L e
8.3.1 Convolutional neural networks Lo L Lo
8.3.2 Recurrent neural networks L L Lo

February 22nd, 2022

9.1 Optimizing a neural network L L
9.1.1 Loss function for regression L
9.1.2 Loss function for classification L 0L

9.2 Vector chainrule e
9.2.1 Scalar values e
9.22 xasize DvVectoro e e e
9.2.3 wx,vsize D,J vectors. e e e e e e e
9.24 xm,v,usize D, J,J vectors e e e

9.3 Finishing optimization L e e e e

9.4 Generalization e

10 February 24th, 2022

10.0.1 Introduction and motivation L oo
10.1 Max margin o .o e e e
10.2 Hard margin SVM 0L 0 e e e
10.2.1 Geometric intuition L. L L e e
10.2.2 Overparameterization and simplify objective 0oL

10.3 Soft margin SVM Lo

11 March 1st, 2022

12 March 3rd, 2022

12.1 Causal chalns o o o e e e e e e e e e e e e e e e e

12.2 Moral responsibility L e e e e e

13 March 8th, 2022

13.1 SVMs continued e e
13.2 Reframing the problem L

13.2.1 Strong duality e e
13.3 Kernel trick e

33
33
33
33
34
34
34
34
35
35
35

36
36
36
36
36
37
37

39

40
40
40

13.3.1 Valid kernels L e e e e e

14 March 10th, 2022

14.1
14.2

14.3

Unsupervised learning L L e e
k-means e e e
14.2.1 The objective o o e e e
14.2.2 Lloyd’s algorithm e e

Hierarchical agglomerative clustering (HAC)

15 March 22nd, 2022

15.1

15.2
15.3

Mixture models oL e e
15.1.1 Connection to generative classification
Max max e e e e
Expectation maximization Lo e e e
15.3.1 The EM algorithm e
15.3.2 General properties Lo e e

16 March 24th, 2022

16.1
16.2

16.3
16.4

Embeddings and principal component analysis o000
Making this linear L
16.2.1 Minimizing the reconstruction error L o oo
16.2.2 Adding constraints
16.2.3 Simplifying the problem Lo
Solving to minimize reconstruction error

Alternative view: Preserving variance e

17 March 29th, 2022

17.1
17.2

17.3

17.4
17.5

Probabilistic embeddingso e
Variations of probabilistic embeddings L oo oo
17.2.1 Factor analysis 0 o e e e e e e e
17.2.2 Variational autoencoder
Topic models e e e e e e
17.3.1 The mathematics e
17.3.2 Procedure to create @,, e e
Dirichlet distributions e
Relationship with discrete mixtures L oL L
17.5.1 Mixture models L
17.5.2 Topic models e
17.5.3 Factor analysis L e e
17.5.4 CompariSOns o v v e e e e e e e

45
45
45
45
46
46

48
48
48
49
49
49
50

51
51
51
o1
52
52
53
53

17.6 Inference o L L e e
17.6.1 Generative model L
17.6.2 A new equivalent generative model oL oL Lo
17.6.3 Motivation e e e e e e

17.6.4 Alternative derivation from lecture

18 March 31st, 2022
18.1 Graphical models L e
18.1.1 Notation and rules L L e
18.2 Bayesian networks L Lo e e e e e
18.2.1 d-separationo e e e
18.3 Uniqueness and parameters L L e e e e
18.3.1 Uniqueness o . o i i i i e e e e e e e e e e
18.3.2 Parameter countingo e
18.4 Beyond Bayes networks Lo
18.4.1 Undirected models L
18.4.2 Factor graphs e

19 April 5th, 2022
19.1 Bayesian networks review oL L e
19.2 Inference o oL e e e e
19.2.1 Setup . . . o o e
19.2.2 Specific example: Rain and sprinkler 0oL oL 0oL
19.2.3 Choosing the order of elimination L L.
19.3 Minimum cost of inference L Lo
19.3.1 Optimal order for polytrees
19.4 Preview: Hidden Markov models Lo
19.5 Final notes L L e e e e

20 April 7th, 2022
20.0.1 Review o e e e e e e
20.1 Time series and hidden Markov models Lo .
20.1.1 Global parameters L e
20.2 Questions we want to answer L Lo e e e
20.2.1 Collection 1: Given globals, solve for locals
20.3 Collection 2: Given x’s, solve for globals o oo
20.4 Forward-backward algorithm: Solving questions in collection 1
20.4.1 Inmtuition oL e e e e
20.4.2 The forward pass and oL oL

61
61
61
62
62
62
62
62
63
63
63

64
64
64
64
65
65
66
66
67
68

20.4.3 The backward pass and B;. e
20.4.4 Solving questions in collection 1 L oL oL
20.4.5 Viterbi algorithm for best path problem

20.5 Solving questions in collection 2

21 April 12th, 2022
21.1 Markov decision Processes v v v v v i i e e e e e e e e e e e e e e e e
21.1.1 Notation, definitions, goal
21.1.2 Types of problems e e e e e
21.1.3 State definition L
21.2 Solving using value iteration L. L e
21.2.1 Finite horizon planning L e

21.2.2 Infinite time horizon e

22 April 14th, 2022
22.1 Review of MDPs o . o e
22.2 Infinite horizon planning L e e
22.3 Value iteration L
22.3.1 COrrectness v v v v v it e e e e e e e e e e
22.4 Policy iteration L e e
22.4.1 Notes . . . o o o e e
22.4.2 Comparing algorithms L o
22.5 Reinforcement learning
22.5.1 Model-based approach L L
22.5.2 Model-free approach L
22.6 Value-based methods for model-free RL: Definitions
22.7 Value-based methods for model-free RL: Algorithms
22.7.1 SARSA . . e
22.7.2 Q-learning e
22.8 Lecture notes L e e e
22.8.1 Value iteration e
22.8.2 Policy iteration Lo e e

23 April 19th, 2022
23.1 Reinforcement learning L e
23.2 Model-based learning e e
23.2.1 Optimism under uncertainty L 0L
23.2.2 Posterior sampling (Thompson sampling)
23.3 Model-free value-based approaches L e

74
74
74
(0]
(6]
76
76
76

77
7
i
78
78
79
79
79
79
80
80
80
80
81
81
81
81
82

23.3.1 SARSA .
23.3.2 Q-learning
23.4 Deep Q-networks

24 April 21st, 2022

1 January 25th, 2022

1.1 Logistics

The syllabus can be found here.

Lectures will be remote for the first week, and then in person. The structure of lectures will be an example,
lecture content, and concept checks.

Recordings are available on Canvas immediately after class. There is a course textbook.

Homework will be due Friday at 8PM EST and will be biweekly and some programming assignments. There
will also be a practical, done in groups of 2-3 people.

There are six late days available, at most two per problem set. There will be two timed, closed-book
midterms. Office hours and calendars can be found here. This year, there will also be a new “Beyond CS
181" sections to cover more advanced /modern material.

We will use Ed as a discussion forum for questions on course content.

1.2 Introduction

Professor Doshi-Velez’s lab is focused on using machine learning for health applications to help doctors make
decisions.

This class is focused on the core fundamentals of how machine learning works. We will mainly see current
(and older) mainstream systems.

An important thing to keep in mind is ethics. ML promises to offload tasks to a machine, but there may be
unintended bias.

We will focus on the “cube" model. Everything we cover in the course will be along three parameters:
supervised or unsupervised, continuous or discrete data, and non-probabilistic and probabilistic. The model
is described in the following diagram:

Structure of the Course

R « "y
Follow the “cube » Probabilistic

~ Supervised: regression, Non-Probabilisti
classification

~ Unsupervised: clustering,

embeddings Continuous
~ Graphical Models,
Reinforcement Learning Discrete

* Excursions to discuss model
classes, model selection,

evaluation... + graphical models, reinforcement
learning

Supervised Unsupervised

Example 1.1 (Deepfakes). Generative adversarial networks are used to create deepfakes. It’s somewhat of
a “race" against folks detecting deepfakes, who find ways to distinguish or identify them, and the deepfake
designers who specifically improve their algorithms to address these use cases.

There’s other forms of impersonation and manipulation too, that are enabled by technology. But imperson-
ation in itself is not a new phenomenon: photos and media have been faked for years. What is it that makes
deepfakes so concerning? There’s been a large amount of media about deepfakes as a political problem. But
one of the most pressing and popular uses of deepfakes is in revenge porn. A lot of the social consequences
are not necessarily political, but deeply interpersonal, shaping the fabric of our relationships.

https://harvard-ml-courses.github.io/cs181-web/syllabus
https://github.com/harvard-ml-courses/cs181-textbook/blob/master/Textbook.pdf
https://harvard-ml-courses.github.io/cs181-web/schedule

Much of machine learning is used to

Make appropriate modeling choices

Have sufficient understanding to apply new techniques
Anticipate and identify potential sources of error
Evaluate carefully

1.3 Taxonomy

The methods we study can be split into three groups, supervised, unsupervised, and reinforcement learning

(RL).

1.3.1 Supervised learning

In supervised learning, we have some data (x,y) and some metric. Given a new input @, we want to make
a prediction y.

One example of this is regression analysis, where labels y are continuous and numeric, or real numbers. For
example, Virtu Financial uses regression to predict a stock’s future price.

There are also classification problems where labels y are discrete and categorical. For example, swing typing
uses a language model to predict which word is intended from typing.

1.3.2 Unsupervised learning

One distinction between supervised and unsupervised learning is that in unsupervised learning, there are no
labels y available when training. All that is available is the data «.

two types of these problems are clustering and embedding. Clustering is used to find natural groupings
of examples in the data, for example Google News, which delivers groupings of stories on the same topic.
Clustering involves discrete data.

An example of an embedding technique is point-of-sales data from supermarkets. We can use Principal
Component Analysis to embed the time-series into a lower-dimensional space to determine the effect of the
2008 financial crisis along different parameters. This uses continuous variables.

1.3.3 Reinforcement learning
In reinforcement learning (RL), the data is a sequence of triples (s,a,r), a triple of states, actions, and
rewards. The essential question is to determine the next action a given a new state s.

For example, consider a robot rolling around Cambridge, its state is the current location, and the action is
the direction it moves. The reward it gets will be based on what happens to it after it takes the action.

2 January 27th, 2022

For the first half of the semester, we will be focused on supervised learning. Today, we will be focused on
regression.

2.1 Regression

Regression is the problem of estimating or predicting some value given some other values.

Example 2.1 (Predicting gate arrival). For example, it is very important for airlines to be able to accurately
predict gate arrival. This is important because there may exist many constraints such as planes can only fly
for a certain amount of time before maintenance, or certain crews need to get to certain places at certain
times in order to get back to their families, etc. To predict gate arrival times for upcoming and current
flights, we have lots and lots of historical data available. Each point in this dataset consists of two parts: an
example of a flight and a measurement of the gate arrival (the thing we are hoping to predict).

Example 2.2 (Movie recommendations). Another example is sorting movies to recommend. Suppose we
are tasked with trying to predict how a particular viewer will rate a particular movie. We have loads of
examples of other people’s previous movie ratings. Giving this past data, we can train some function (or
model) that predicts ratings for movies some person has not seen yet.

2.1.1 Supervised learning

Recall that supervised learning is when we have some input «* and need to predict an output y*. We want
to know how we choose or calculate this y and how to measure the goodness of our prediction?

Note. y may be continuous or discrete.

2.2 Non-parametric methods

The core idea of non-parametric methods is to make predictions based on similar points in the training set.

Non-parametric models are models that grow with the data. Parametric models have finite parameters.

Note. We note that relevant textbook sections are 2.1, 2.2.1.

2.2.1 k-nearest neighbors (k-NN)

Consider a training dataset of datapoints

D = {(2n, yn) ney = {(@1,01), (@0, yn)} (1)

We can predict some label §* for an example &* by finding the & closes training examples {z : k € £*} to
x* and calculating

= w (2)

Implicitly, y* is a function of input «* because the training labels we used to calculate §* were selected

according to the proximity to x*.

One of the benefits of k-NN is that it works regardless of the curve. We do not make assumptions about
the underlying relationships, whether parabolic, linear, quartic. This is an appealing property. Moreover,
we do not have many parameters to keep track of, only k.

10

One disadvantage is that we may need to keep the training data. Consider if we have terabytes of training
data. For k-NN to work, we need to hold onto the training data to query it every time we want to make a
prediction. This is the cost of not making any assumptions.

A more important issue is that we need to define similarity or closeness. How do we determine the k nearest
neighbors? In one dimension, this is easy. If our training data have high dimensionality, where the units
are different for each component, how do we define a distance function that captures the relevant variation?
This problem is nontrivial.

2.2.2 Kernelized regression

Another idea is to take a weighted average of all training labels, but upweight labels corresponding to
examples close to x*. Close training examples have lots of influence in predicting §* and far-away points
don’t have any. We can aggregate training labels by

N
g = ZK(w*7mn)yn- (3)

Note that K : R x R? — R is our kernel, it measures the closeness of our new point «* to a training point
x,, where d is the dimension of our vector space.

The kernel weights {K (w*,azn)}nN:1 might not sum to one, so we can ensure a convex combination by
normalizing

v _ SN K(®*, @) yn

(4)

One main disadvantage, however, is that we cannot predict a value outside the min-max range of the training
labels.

2.3 Parametric methods: linear regression

For today, we will focus on linear regression.

Note. The relevant reading for this section are textbook sections 2.3, 2.4, 2.5, 2.6.1, and 2.7.1.

Our goal is to make predictions based off of some parameters. This is different than non-parametric regression
here our prediction is explicitly a function of our training data and not some weights w € R".

More specifically,we want to find some linear combination of the {z;}X¥ | input values that predict our target
Y.

Definition 2.3 (Linear regression). Suppose we have an input = € R” and a continuous target y € R.
Linear regression determines weights w; € R :

Yy =wo+wiTy+ - +wWpTp (5)

Note. We note that wgy has no corresponding xy. This is known as the bias term and accounts for data that
has a nonzero mean.

Linear regression deals with a continuous output domain. It is a supervised technique. Finally, it is
non-probabilistic.

In linear regression, we consider training data

D= {(xmyn)}gzl : (6)

11

Our goal is to learn a function f(x*,w) = §* that predicts our labels. How do we identify w*?

In general, for regression, we choose a loss function
L:R"Y - R, (7)
choose a class of functions f : R? x R — R and identify the best weights as

w* = argmin £(w). (8)

w

In linear regression, we choose our function class to be linear functions

N
7" = f(x*,w) =wy + anazn (9)

n=1

2.3.1 Bias trick

One trick is to use the bias trick by adding 1 as the zeroth element to each of our training points to absorb
the constant into the sum. Then our function is simply

flx*,w) =wTz. (10)

2.3.2 Least squares loss

We now define the loss. Commonly, loss is a function of the residuals produced by a model.

Definition 2.4 (Residual). The residual is the difference between the target y and predicted value §:
residual = y — f(z,w) =y —wTx (11)
Note (L1 loss). The sum of the residuals is sometimes referred to as L1 loss.

The most standard loss least squares or L2 loss. It is given by

N |
Z flzn, w =3 Z —wTx]”. (12)

5
&
I
N |
@
l\J\»—A

To find the best weights w*, we can take a derivative of L(w) to find a global minimum:

Z —wTx,)(—,). (13)

l\')\»—l

Generally, we use gradient descent to approach a better setting of our weights:

wt) = w® — Vo, L(w) =w® =0 (g — wTz,)(—y). (14)

n

Today, in the case of linear regression, there is an analytic solution. In lecture, we will handwave the solution
and derivation. Essentially, we can write everything into matrix form and we have the solution

Vwl(w)=—-2XTy + X" Xw. (15)

12

Note (Matrix form derivation). Consider the residuals squared in matrix form:

L(w) = 5 (y~ Xw)T (y ~ Xuw). (16)
The gradient is given by
VuLl(w) = =2XT(y — Xw) (17)
where we use
Vi(a — Cb)TD(a — Cb) = —2C"D(a — Cb) (18)

where D is a symmetic matrix. For us, D = I. The expression for w* follows.

In this derivation, there are D dimensions in data and N points. y is an IN-dimensional column vector, w
is a (D 4+ 1)-dimensional column vector of weights and X is a N x (D + 1) matrix of data. X is called the
design matrix.

If we let the derivative vanish, we obtain

w' = (XTX) ' XTy. (19)

The term (XTX)71 is like the variance of the inputs and X Ty is the covariance of inputs with the outputs.

The a given datapoint x*, the prediction is
i = [0 Xy e = (XTy)T () (20)

Note. To take the inverse, we require X to have full rank, which makes XTX positive definite.

Note (Linear algebra). We have D x vectors in N dimensions. We are trying to produce a length N vector
y. g is the closest projection of y onto the row space of X.

2.3.3 Basis regression

This is a key extension of linear regression. Basis regression is an intermediate regime between linear
regression input and neural networks (NN).

13

3 February 1st, 2022

Announcements

e Problem set 1 is now due February 11
e Office hours will be online this week because dining halls are still running at limited capacity
e The reading is 2.6.2-2.6.3

3.1 Probabilistic regression

Recall that in the first half of the course, we are focused on the supervised learning part of the cube. Last
time, we studied a non-probabilistic model with continuous outcomes — regressions. Today, we will focus
on continuous outcomes, but in a probabilistic manner.

Example 3.1 (Bat mating systems). This is an example of how regressions can be off. A paper on mating
systems and brain size, the authors wanted to predict brain size using

wo + wy X testes size = w; > 0. (21)
Running this regression, they noted that w; is positive. After running another regression, we see that
wo = wy X bat size + wqy X testes size =— wy < 0. (22)

They then found the errors and found that when the bats are monogamous, their brains are bigger and testes
are smaller. The opposite is true for polygamous bats.

Example 3.2 (OKCupid). OKCupid ran a regression and found that men have particular preferences in
race, and even when women claimed they have no racial preference, there is a slight preference for men of
the same race. This shows that implicitly, people are still taking race as a factor in mating and dating.

Recall last time, we discussed linear regression. Recall that our predictions are denoted § = f(w,z) = wTx
where « is prepended with a column of 1s for the bias term. We note that the squared loss is given by

1

L(w) = 3 Z(yn - men)2~ (23)

n

We chose this loss function. because it is easy to optimize. The optimal weights are given by

w* = (XXT)" ' XyT. (24)

Today, we will discuss a probabilistic view of this loss.

3.1.1 The probabilistic view

We will introduce generative models. A generative model is like a story. Given some way of producing the
data, we want to produce an estimator that maximizes the probability of the data given the model. We want
to ask for this property.

We can consider some data with some Gaussian perturbation
y=—wizte, e~ N(O,02). (25)

Note (Normal distribution PDF). Recall that the probability distribution function is given by

N(z,p,0%) = ﬁ exp [—(22;5)2] (26)

14

This means that we are likely to get some perturbation close to the mean and unlikely to get some pertur-
bation that is far from the mean.

Using this PDF, we can define the probability of the data given the model p(datajmodel). This is called the
likelihood of the model. The model in this case is the choice of w and the model class is the class of linear
functions.

Our goal is to maximize the likelihood to find the most likely model.

In our case, this is
N
p(datajmodel) = H (Y |Tn, w,0?). (27)

Note. We can write this as a product because there are N predictions, from x,, = y,,. These are all driven
by the same w, o2. These are all independent.

Professor Doshi-Velez represented this using plate notation.
If we did not know w, however, this is no longer independence and the product is no longer valid.

Note. We will later take w to be a random variable, but for now, we hold it constant.

We can take the logarithms of both sides and we can write

log p(datajmodel) = Z log (p(y,,|@n, w,0%)). (28)

Then y ~ N (wTx,0?) because wTx is a constant. Then

1
log p(data|model) = Z log exp { —(y,, — men)Q]
o

2 1 1 9 9
_Zn:loggr+z< 202) = wTx,) :N<—210g27r—210g0 2022 n— wTx,)

(29)

By observation, the first term is a constant and there is a scale factor on the second term. Note that the
model that maximizes the likelihood (minimizing the second term) is the same as minimizing the square
loss. Then solving for the optimal w gives us the same solution as the least squares loss.

Note. This means that least squares loss requires an assumption that the noise is Gaussian. This is because
these two are mathematically equivalent. The probabilistic regression assumes Gaussian noise to reproduce
least squares loss.

We can also think about least squares loss as reducing the error with respect to the second moment. The
second moment is our notion of loss. We can also apply least squares loss to another form of noise. This
would be an approximation. We note that in the case of Gaussian noise, the problems overlap exactly.

3.1.2 Matrix form
Let us consider matrices X,Y and our goal is to maximize p(Y | X, w,c?). We not that Y ~ N (wTX,I,0?).

Let ¥ = Io? be the variance and X! = #]I is the covariance. Then for a multivariate Gaussian distribution,
we have

p(Y|X,w,l0?) = log {\/ﬁ exp {—;(Y —wTX)2 Y - wTX)T] }

1
= log constants — Q—Q(Y —wTX)(Y —wTX)T (30)
o

15

where we recover the above.

3.1.3 Optimal variance

We can determine the optimal o2. Consider taking the derivative of the log-likelihood with respect to o2
and find the maximum. Then we have

0 N 1 1 1)?
= _ - _ = _apT 2¢_ =
5 log p(data|model) = 3 52 5 En (yn wTa,)(1)(2)

N 1 1
= —502 + 5 ;(yn - wTﬂvn)2 =0 = Ul%/IL - N Z(yn - wT-’Bn)Q (31)

n

which is just the empirical variance! This makes sense because given some Gaussian noise, in expectation,
we will get the mean value wTx,,. This gives us the expected variance.

3.1.4 The geometric perspective

Thus far, we have discussed an optimization view and probabilistic view of least squares loss. Now we, will
discuss the geometric view.

We will think about projecting Y onto the space spanned by Xy. The optimal projection is given by

ZXdéXd’w = XT(XXT)7IXYT = XTw. (32)

Example 3.3 (Different generative models over). We can consider a Laplace error with A = 1 with PDF
exp —Ale|. The Gaussian as above, and the T-distribution for v = 1 with PDF (1 4 £2)~1.

1. Convert each PDF on ¢ into a loss function
2. Suppose we have some regression lines — which ones will correspond to each loss?

The main strategy for the first question is to substitute the PDF into the log maximum likelihood. For the
Laplace distribution, we have

> logexp [=Aly,, — wTa,]]. (33)

n

and for the T-distribution, we have

> (=1)log [1+ (y,, — wTz,)?]. (34)

n

Note that the Laplace loss will want to be closer to the two data points.

16

4 February 3rd, 2022

Announcements

e Today’s lecture will focus on textbook sections 3.1-3.5
e Homework 1 will be due February 11
e Qur first midterm will be on March 1

4.1 Classification

Today, we will continue on supervised learning, focusing on non-probabilistic models with discrete targets .
Example 4.1 (Insect classification). Insect classification based on visuals and images by Hassan et al 2014.
Example 4.2 (COVID-19 patients). A validated, real time prediction model for favorable outcomes in
hospitalized COVID-19 patients, Razavian et al 2020.

We can consider a plot of two parameters @1, @2 where y = f(x1,22) and we want to create a boundary
to partition or classify target values. We want to decide what model class to use and what our objective
function is — to define our loss.

We will use ¢; to represent class i, for example: y € {c1,co, -+ , ¢k, -+ ,cx}. We can represent y as a row
vector with entries {0,1} where 1 in position i represents membership of class ¢;.

We can also use the encodings y € {—1,1} or y € {0,1}. The former will be used in this class.
Note. We want to note that k-NN still works. We just change the average to a vote and we are finished.

We note that linear regression for classificaiton does not work. We can consider adding points to a step
function. The more points we add, the partition point may change, even when outlier points should not
matter in determining the class.

4.1.1 Parametric models for classification

This is an example of a model class. We can consider target values defined by
g =sign(f(z,w)), flz,w)=wTe, (35)
a linear model.

Note. We are using the most simple model to understand the underlying mechanics. Once we get to more
complicated objectives and functions, we simply just change the objective function to obtain new models.

We can consider an equation for the definition of a boundary
0 =wy + wir1 + waxs = wo + <w1 + wa,x1 + $2>. (36)

The wy is the offset. We note that the terms of x1, z5. The vector (wq,ws) is perpendicular to the decision
boundary. The weights are the quickest way to move to flip the class determined by the classifier.

4.1.2 Objective function

The loss function is generally dependent on the application.

We can define
N
1, z>0
£0/1(2> = {O lse 50/1(’UJ> = Zg()/1<_yn(wTwn))- (37)

n=1

17

Note that wTx >0 = y =1 and wTx < 0 = y = —1. This loss function tells us that if we classify
correctly, we have loss 0 and if we classify incorrectly, we have loss 1.

Note. We are simply counting the number of cases and does not account for uncertainty — the distance
from the boundary. Because of this, the classifier will not know where to focus.

We can’t take gradients to solve/minimize this and the solution is NP-hard.

4.1.3 Hinge loss

We can define hinge loss as

z, z>0
0, else

N
E(’UJ) - Zghinge(Sign(wTw)) = Z _(ym)wTwﬂ% (38)

n=1 incorrect m

ghinge (Z> = {

that is, the loss is proportional to how far you are from the boundary. We can take gradients of this loss
function! We have

Vul(W) =V = Y ypw @y == Y yay = w = w—VyL(w) (39)
badn bad n

where we follow the gradient to optimize/minimize the loss.

4.1.4 Stochastic gradient descent

In general form, stochastic gradient descent involves choosing a batch of data of size M and compute the
gradient with respect to w for the batch V, Ly (w).

There are ways to anneal the step size 7, but we want 77 to be big enough that we can reach the optimum.

Stochastic gradient descent is a good algorithm. An older algorithm involves doing SGD with M = 1. If 4.,
is incorrect, we update with w — w — nx,,. This Perceptron algorithm converges to a solution if the data
are separable.

This algorithm is understood as optimizing a hinge loss in a particular setting.

Note. If the loss is convex and the boundary is linear, we will converge to the minimum.

4.2 Evaluating classification

We can first consider errors. There are four cases:

Error ‘ Yy ‘ 7
True positive | 1 | 1
False positive | -1 | 1
False negative | 1 | -1
True negative | -1 | -1

Table 1: Errors

We may care more or less about certain types of errors. Note that £y,; treats both false positive and false
negative errors the same. We can define accuracy

TP+TN
TP+TN+FP+FN’

Accuracy = (40)

18

We can define true positive rate (TPR), false positive rate (FPR).

TP FP

TPR = ——— FPR= —————. 41
R TP+ FN’ R FP+TN (41)
We can also define precision and recall:
TP TP
Precision = ———— l=—— 42
recision = 7o Reca TP L FN (42)

We can interpret precision as the number of true alarms over the number of alarms. Recall is the proportion
of identified positives over true positives. This is the same as TPR.

We can plot the FPR against the TPR on [0, 1] x [0,1] and obtain the ROC curve. This ROC curve tells
us our trade-off in model choice. The area under the ROC curve, the AUC is often used as a metric for
classification. The maximum AUC is 1.

Example 4.3. Assume that the curve is always constant or increasing. If a system has AUC = 0.75 and
we care about the maximum TPR we can get if the FPR = 1/8.

What is the min and max TPR that is possible? We can minimize and maximize the TPR by considering
different plots. We can achieve TPR = 0 at FPR = 1/8 by considering

1
TPR — 0, FPR < 3 (43)
1, else

and achieve a maximum of TPR = 6/7 with

TPR:{

, FPR<}

, else

~lo ©

19

5 February 8th, 2022

5.1 Probabilistic classification
Announcements

e Homework 1 is due Friday and homework 2 will be released the same day
e Today’s textbook section is 3.6

The core idea in probabilistic classification is to determine the probability of a class y given some input z.
We will motivate our discussion with some examples:

Example 5.1 (Emails). Classifying email as spam

Example 5.2 (Bad weather). Predicting parking bans in inclement weather. What is the probability there
will be greater than five inches of snow?

We are often not only interested in predicting class labels, but are also interested in approximating the
probability that an example belongs to a particular class.

We recall that last week, we used the parametric classification model to predict label g, as

R +1, wTx+wy >0
Yn = { (45)

—1, otherwise

where we learn weights w by training using the hinge loss.

Today we discuss two approaches to calculating the probability that an example is positive. In the two
approaches, we will use mazrimum likelihood estimation to learn model parameters.

Today, we will assume that the two classes are {0, 1} where 1 is positive and 0 is the negative label. We have

. 1, ply=1lz) > p(y =0l
;o {1 pw=12)>p=0))
0, otherwise
5.2 Discriminative approach
Our goal is to find parameters w that maximize the conditional probability of labels in the data:
argmax,, Hp(yn|acn, w) (47)

where the term p(y,|x,,w) is called the conditional likelihood.

In this setting, the labels y, are generated based on covariates or features x,. We take the produce here
because we think of pairs {(Z,,,)})_, as independently and identically distributed.

We need to choose a model class. In this lecture, we will model p(y|x) using a sigmoid (logistic) function

ply=1]z) = m' (48)

The sigmoid function is often denoted using a o and takes scalar values as an input:

_ 1
14 exp—z

o(z)

20

The sigmoid flattens its input to output values between 0 and 1.

In logistic regression p(y = 0|x) = 1 — p(y = 1|x). If we write h = wTa, then

1 1
)= — — -)
ply = lz) = 5 ey p(y =Olz) = o (50)
Because y € {0,1}, we can rewrite p(y|z) using the power trick:
p(ylz) = ply =1]z)" - ply = 0z)' ™" (51)

The parameters that mazimize a likelihood function (the MLE) also minimize the negative log-likelihood

function. We can treat the negative log-likelihood — the expression we are minimizing — as the “loss
function." Thus the negative log-likelihood or loss over the dataset D can be written as
Lp(w) ==Y [p(ynlen)] =D ynIn[l+exp—hn] + > (1= yn)In [l + exphy] (52)

where we have used log ruls and the power trick. The second term is understood as the loss of the classifier
on a negative example (x,,,y, = 0). The components pick out the loss contributions from both samples.

We can draw a picture of the logistic loss and compare it to 0/1 loss and hinge loss.

Note. The logistic loss function is differentiable and convex. We can use gradient descent methods to
minimize the loss. The logistic loss penalizes the classifier’s predictions on data points where the classifier
predicts the correct label because it is proportional to our belief. The logistic loss prefers to make better
decisions on correct predictions, pushing away from the decision boundary.

The gradient of the loss is given by

Vuwlp(w) = Z ~YnTnP(Yn = 1|xn) + (1 — yn)Tnp(yn = O|x,,) (53)

5.3 Generative approach

Our goal is to find parameters w that maximize the joint distribution of features x,, and labels y,:

argmax,, | [p(@n, yn|w) (54)

n

where the term p(x,,, y,|w) is called the joint likelihood.
In this model, the label comes first and the label creates the data.
The generative model is flexible. It can add knowledge and handle missing labels elegantly.

We will illustrate the generative approach using two methods: multi-variate Gaussian models and naive
Bayes models.

Steps for specifying and learning a generative model are
1. Decide on a data-generating process
2. Choose a parametric model
3. Minimize the negative-log likelihood

Recall the product rule:

p(x,y) = p(xly) - p(y). (55)

21

p(x,y) is called the class-conditional, p(y) is called the class prior. This implies that labels y are used to
generate covariates .

Today, if the covariates & are continuous, we will assume they are Gaussian. If they are discrete, we will use
naive Bayes. Today we will also assume a Bernoulli class prior.

To find the MLE of parameters w, we can apply the chain rule:

argmax,, | [p(an, ynlw) = argmax,, [[p(@a yn, w)p(yn|w). (56)

n n

We can transform the likelihood into a negative log-likelihood and applying log rules gives us our loss function
wsmin {3 ot] S o &7

We will predict labels y for covariates x using Bayes’ Rule:

p(y = 1z) < p(y = V)p(x|y = 1). (58)

5.3.1 Class prior
We will model our class prior as a Bernoulli random variable with probability #. Thus
ply) = 6" (1= 0)0 (59)

and taking 0pL(#) we find that the MLE 0* of 6 is

L1
0 _N;y” (60)

5.3.2 Class conditional with continuous z

Say that x are continuous. We assume that covariates are distributed as Gaussians, where the parameters
are distributed differently depending on the true label y:

x‘y:O'\'N<MO7ZO)a $|y:1NN(N1721>7 w:{M07ZO7M1721}- (61)

We think of the training data as being in two piles, one for each class. For class 0, we use {(€,yn)} : yn =0
and we estimate pg, X for the negative class. We then estimate u1,; for class 1.

When we derive the MLE for parameter pg, we find that

R 1
o= D @ (62)

n:yY, =0

where Ny is the total number of examples with label 0. This is the empirical average of the covariates for
all of the training data points in class 0.

Note. If the class-conditional distributions have the same covariance matrix, the learned decision boundaries
will be linear. Otherwise, they will be quadratic.

The decision boundary for our generative model is

1, ifply = Dp(zly = 1) > p(y = 0)p(z|y = 0)
y = .
0, otherwise

22

5.3.3 Class-conditional with discrete x

We now counsider the case with discrete data x4 takes on one of J values {1,...,J}. For example, x4 could
be hair color.

The naive Bayes assumption is that each dimension of data « is independent, conditioned on the class:

plxly =1) =[] p(zaly = 1). (64)
d

We use naive Bayes to limit the number of parameters needed to specify our model. If features were dependent
on each other, then we need to explicitly model this dependence using additional parameters.

We model each feature x4 as a categorical distribution. This is a generalization of the Bernoulli. For example,
if there are three hair colors, then the vector mgr = [mar1 = 0.2, Tap2 = 0.5, T3 = 0.3] parameterizes g
where 7yq; is the probability in class k of feature d taking on value j.

We can do a maximum likelihood fit of parameters 7y for class 0 and 7 for class 1.

Note. In the discrete case, our naive Bayes classifier has linear decision boundaries. Moreover, in the course,
we will use the notation C' = {C4,...,C}} to denote the k classes Cy,Cy,

5.4 Multi-class classification

To move from binary to a multi-class setting, the generative case is easy. We just use a categorical class
prior and estimate class conditions. Classify as

argmax;, p(x|yk)p (Y)- (65)

In a discriminative setting, we need to have separate parameters wy, for each class. We classify using the
softmax function

=
expwi T

Py = Cufe) = —oXWE2_ . (66)
Y poexpwiT

To learn non-linear decision boundaries, we can apply basis functions to our data. See the lecture slides for
visualizations.

23

6 February 10th, 2022

Announcements
e Midterm 1 is on March 1st

Today’s lecture is perhaps the most important lecture in terms of application of knowledge in the real world.
Today, we discuss the frequentist view of model selection. The Bayesian view is discussed in the next lecture.
Though the Bayesian view is elegant, the frequentist view is much more practical.

6.1 Model selection

Today’s goal is to figure out how to find models that will perform well on new data.

6.1.1 Examples of challenges in model selection

Example 6.1 (Sunspots and Republicans). We consider using complex bases to fit the data. However, by
making bases too complex, we will overfit to the training data and models that did well on our training data
will not likely extend well to future data.

We need a model selection process to help us distinguish between truly good models that generalize to new
data and bad models.

Example 6.2 (High dimensionality). We can consider the number of dimensions that is much higher than
the number of data points. Specifically, we have x4, where d the dimension. Let d = 2000,n = 8 and the
first dimension is a perfect predictor: z;, =1 = y; = 1. Our model should ideally recreate this.

Hoewever, if dimensions are large, there may be another dimension in x that also perfectly predicts y, which
makes it impossible to predict. This is another situation where our model selection process helps us determine
whether models will or will not generalize.

6.2 Checking for generalizability

There are two methods to check for generalizability.

6.2.1 Using train, validation, and test split

Let us have a full dataset. We can split it into three parts randomly. We assume here that the data comes
from the same distribution.

Note. There are more complicated things we can do, like splitting temporally, training on past data and
validating on more present data. For the purpose of this class, we will consider random splits.

Training split. We can train all of our models on this part. For example, we can try all of our linear
regression models with different bases on these models.

Validation set. We will evaluate each model here. This is the set of data where we can choose our best
performing model.

Test set. We can get the final measure of quality of the best model we selected. We need to test again
because in the validation set, our selected model could have just been lucky and done really well on our
validation set. This is the safest way to test the models to evaluate the true accuracy of the final model.

If our model doesn’t do well on the test, we can keep extra test sets if we have enough data. If there is not
enough data, we must do cross validation.

24

6.2.2 Cross validation

We may find ourselves in situations where we cannot split the data into three parts. We can do cross
validation in this case. This means that we split the data randomly into parts. For example, suppose we
have five parts. We will train our model on all but one of the parts. We can train on parts 2-5 and validate
on part 1. Next, we train the data on parts 1, 3-5 and validate on part 2, and we continue the pattern for
each of the five parts. This tends to well in practice.

6.3 Bias-variance tradeoff

Here, we will discuss why models fail.

Generally, as a model size (complexity) gets bigger, the bias goes down, because we get a greater ability
to fit our model onto the training set. The potential for a strangely specific curve to show up in a more
complicated model increases; in other words, as the model size increases, the variance tends to go up.

There is a sweet spot that minimizes overall test error (which is made of bias and variance). We want a
model that is at the minimal test error.

Note. The model size is roughly the same as the number of parameters. This is a reasonable proxy, but
some parameters may not be independent of each other.

Note. We assume that the optimization is not an issue. There is one exception to the bias-variance tradeoft,
i.e. certain neural networks.

We can consider the equation for expected least square error on some new unseen sample:

Eyl(y - 9)*] = Ely — fo(®))’] (67)

where y is a function of . We can incorporate the mean § and write

Elly—y+3— fo(®)’] = El(y — 9)°] + E[(y — fo(2))*] + 2E[(y — §)(5 — fp(2))] (68)
true noise model error

where the third term vanishes because E[(y — ¢)] = 0 and the two terms are independent. Now we can write

El(y - fp())’] = El(5 — fo(2))?] + E[(fo(x) — fp(2))’] + 2E((5 — fo(=)) (fo(®) — fo(®))] (69)

bias squared variance of model fit 0

where fp(x) = Ep[fp(x)]. We can describe this by consider a bunch of data sets and doing this experiment

one million times. f represents if we took 100 data points, fit it, took 100 more data points, fit it again, and
averaged all the models.

Note. f # 4. If we had a linear model, the average model would be a line but if our true y was a parabola,
then f # 7.

The first term is the bias squared. It shows that if we have the wrong model class, we will suffer an error no
matter how good everything else is. Underfit models have errors due to bias.

The second term is the variance of model fit. If all models are very far from the mean, it will contribute
to the error term here. This means that the model is too complicated. If the model is too complex, it can
overfit because we will overfit to the data. Overfit models have error due to variance.

The third term vanishes by the same argument above. Overall, we have
E[(7 — 9)%] = noise + bias® + variance. (70)

Note. Only the bias and variance are controllable by our model.

25

6.3.1 Managing the bias-variance tradeoff

We can use regularization, for example ridge regression w? or lasso regression |w|. We can add terms to the
loss:

Lp(w) + AR(w) (71)

This makes the model class smaller. We are basically saying only a few dimensions matter and we ask our
model to pick out one or two important covariates. Conceptually, we are trying to reduce variance via a soft
penalty on more complex models.

We can also ensemble. We can do classification by committee, random forest, bagging, extra random forest,
gradient boost, bootstrapping, etc. We can take many fits and then take the average of predictors. We are
effectively reducing the variance since we are taking an average — without affecting the bias.

26

7 February 15th, 2022

Announcements

e Get started on homework 2! It is due next Friday
e Today’s relevant textbook sections are 2.8 and 2.9

Today, we will continue to discuss model selection. Last time, we were concerned with the question: given
a situation, how to choose the best model.

Example 7.1 (2008 mortgage crisis). In 2008, banks wanted to know how risky loans were.

Note. We note that today’s lecture will not be practical. Last lecture was practical — the bias variance
trade-off is very importantly conceptually, and cross validation is important for small data sets.

Today’s lecture is not as practical, but mathematically elegant.

7.1 Bayesian models
Before, we assumed that y was determined by some & and some global parameters w. For example, linear
regression produces a prediction g from some corresponding x and some weights w.

Today, the difference is that our global parameters are no longer fixed. We imagine that w are random
variables. This is the key idea.

If this is true, we cannot solve for a single value. In particular, this gives us a framework for the following:

1. Computing the posterior: p(w|D), i.e. what models are likely given the data.
2. Computing the posterior predictive: p(y*|x*, D), i.e. what output is likely given the data
3. Computing the probability of the data: p(D) = p(Y]X).

Note. The last part is the model selection. We want to select a class of models for which Y is likely given
X.

The key idea in Bayesian thinking is that we are always going to be marginalize over the random variables.

7.1.1 Posterior over parameters

We will simply apply Bayes’ rule:

Y IX wp(wlX) _ p(YIX, w)plaw)
PP =T T) "

where XY are the data. We call p(w|X) the prior and we assume that the probability of the weights is
independent of the data because the data is fixed.

Example 7.2 (Flipping coins). Consider flipping N coins where D = z1,--- ,xx where x; € {0,1}. The
likelihood of the dataset is

p(D|f) = O (1 —)N (73)

where 6 is the unknown fairness of the coin, Ng, Nt are the number of heads and number of tails.

A frequentist approach where 6 is unknown but fixed, we would choose the value

Ny
9 =2 74
MLE = 37 N (74)

27

that maximizes the likelihood.

From a Bayesian perspective, 8 is a random variable and we must estimate the posterior given the coin flips
we have seen. We need to decide on our prior beliefs by deciding a prior distribution on §. We assume
0 ~ Beta(a, 8). Then p(f) = 6°~1(1 — §)#~1. We can calculate the posterior

p(0|D) = p(D|6)p(6)
= 0N (1 - 9)NrgoT (1 — 0)F1 = gHv el (1 —)N+l = o'l g = (75)
where o/ = a+ Nyg,8 = 8+ Nr.

Note. We note that the beta distribution is a conjugate prior for the Bernoulli distribution.

In Bayesian probability theory, if the posterior distribution p(f#|X) is in the same probability distribution
family as the prior probability distribution p(6), the prior and posterior are then called conjugate distribu-
tions, and the prior is called a conjugate prior for the likelihood function p(X|6).

7.1.2 Predictive posterior

Now that we have a posterior, we want to be able to use this posterior p(x|X) to predict things.

We saw that we can choose parameters to optimize our data likelihood p(D|#). We see that

Ny
0 € argmaxp(D|f) = —————. 76
MLE ge xp(D|6) Ny + Ny (76)
We can use the posterior p(6|D) by taking the single most likely value of 6 to make our decision:
Ng+a-—1

0 0|D) = . 7
MAPGargIgnaXpH) 7 Ay Erp— (77)

However, any true Bayesian will use p(6|D) to average over all possible models 6.
p(a* = 1|z, ay) = /de p(z* = 110)p(8]D). (78)

0
The above is a general equation. We will now apply this to our specific example.
«Q + NH

=1z, = [df p(z* =1|0)p(0|D) = [df Op(0|x) = E 0] = . (79
pa” = 1faron) = [d0p(a” = 10)p061D) = [b 09(012) = By 0) = ="l (79

Note. In this example, p(x|f) simplified cleanly. Note this is not an estimate for a single 8, we averaged out
the . We get the posterior predictive by taking an integral over the unknown parameter.

Note. We also note that as |D| grows, these prediction techniques approach the same predictions.

7.1.3 Prior selection

We can also consider different values of «, 8 that give us a different posterior prediction. We then ask what
is the best way to select our prior?

In the Bayesian setting, model selection corresponds to model class selection and prior selection.

For example, when we fit data, we can select what curve to fit and what prior to put on the parameters on
the curve. There is no one single correct line or parabola since we will average all possible ones equally.

We can select between two models by calculating the likelihood of the data p(D) for different model classes:

p(D) = / dw p(Dw)p(w). (80)

28

If we are considering too many possible models w, then p(w) is spread out an the integral will be very low.
This is how the Bayesian approach penalizes overly complicated models. However, if p(w) doesn’t contain
good models, then p(D|w) will be low and the integral will still be low.

29

8 February 17th, 2022

Announcements

Today’s relevant textbook sections are 4.4-4.6

Problem sets will moved from 8 PM to 11:59 PM

There will be review sessions for the midterm coming up!

The material will cover up to next lecture’s lecture

One cheat sheet front and back is allowed, including practice questions and topics on the midterm and
not on the midterm

8.0.1 Deep learning today
Deep learning is increasingly commonplace in our lives: auto-completing words on phones, auto-focusing on
faces, Google translate. They are also becoming more inclusive.

Deep learning models are entirely enabled by the massive amount of data. The importance of data for deep
learning implies that deep learning works well as an interpolator, but not an extrapolator. Deep learning
uses nonlinear functions.

The ideas for deep learning models have existed since the 1990s. However, it has only been able to take off
because of computing power and GPU technology.

It is important to think about the architectures and optimization methods.

8.1 Deep learning models

Two models we are not going to talk about are gradient boosted trees and extra random forests. These fall
into the class of ensemble models and methods. These are models where we train a bunch of models and
take an average of some form.

Let us consider logistic regression. Recall that in probabilistic classification, we have

by = 12) = o(—(wTe 4 b)) = o (1)

Given a slope and offset w,b, wTx + b = 0 marks a line where p(y = 1|x) = 0.5. This means the boundary
in logistic regression is always linear. We need a more expressive model class to draw non-linear boundaries
to fit the structure of non-linearly separable data.

One thing we can do is use a basis ¢ : RP? — RP " to transform . This would solve the problem by allowing
us to achieve non-linear boundaries, but we don’t always know what basis ¢ to use. One fundamental idea
of deep learning is to learn the basis.

Note. Deep learning is considered adaptive basis regression in the statistics community.

For notation, let f = wT¢ + b and p(y = 1|x) = o(—f). The big question is finding the form of ¢.

When we talk about architecture of a neural network, we are talking about the structure and form of ¢. One
option is to have data point & € RP as inputs. We can define

b= o(Whz 1 p0) (82)

as our basis transformed data where W) e RJXD,b(l) € R’. These parameters map x from a D to .J
dimensional vector ¢. The superscripts indicate that these weights are done in the first step or layer.

30

8.1.1 Expressiveness
This is an expressive model class. As J — oo, this becomes a universal function approximator. That means
we can express any f.

For some intuition, consider the J = 2 scenario and picking a sigmoid as our activation function. Essentially,
we can build a staircase of sigmoids. When we add more and more sigmoids, which we get when adding
more lodes in the hidden layers, we can represent increasingly complicated functions.

Note. Certain functions may be hard to fit — for example, polynomials may be hard to fit with this stacked
sigmoid. This relates to the inductive bias of the architecture. By making this bias (model class) choice, it
makes it hard for us to do certain things.

8.1.2 Ease of computation

Another reason we can choose this architecture is because it is computationally easy. Computing ¢ requires
matrix multiplication and addition. Computers are good at this and this ease facilitates prediction and
optimization.

We can also change the non-linear function we use. We call these functions activation functions. We can use
the tanh or rectified linear unit ReLLU:

ReLU(z) = max (0, z). (83)
The sigmoid function might have had an easy time representing something like stairs and radial basis acti-
vation might have a good time representing wavey functions. ReLLU may allow us to make jagged functions.

The inductive bias is our choice of activation function and how that impacts what types of functions we can
model.

Note. In classification, we will always need a softmax at the end to ensure a proper probability distribution.

8.2 Additional architecture
We can add more layers. Consider if we had L hidden layers. We can say
D =qWwOX 1) &0 = WD x 4pliY) (84)
for 1 < £ < L. Then our output is in terms of our last hidden layer ®). In classification, this looks like
O = softmax(W P @E) 4 pL)), (85)

This is called a fully connected, feed-forward network.

We note that multiple layers allow for feature reuse which allows us to model more easily.

8.3 More architectures

We discussed some fully-connected deep learning networks. We will now discuss different architectures.

8.3.1 Convolutional neural networks

We can consider image recognition and a filter applied to parts of an image to detect certain aspects. We
can use the filter to scan across the image to produce a new image that consists of filter values. We can
then apply a pooling step, where take a max value in parts of the image. We can then apply a feed-forward
neural network to produce a function f.

Convolutional approaches let us discover motifs in our image. This is the way modern computer vision works.

31

Example 8.1. We can learn to find a ball in an image this way because learning an image once in a particular
region can be applied elsewhere in the image.

8.3.2 Recurrent neural networks
If we suppose that our data is time-dependent, we can apply different models to different columns of X.

We can pick this type of model if we believe that the way to process data is sequential updates along the D
dimensions of data.

32

9 February 22nd, 2022

Announcements

e Homework 2 is due Friday
e Midterm 1 is next Tuesday
e We will have our first ethics module on March 3

9.1 Optimizing a neural network

Today, we will continue our discussion of model classes. Last time, we talked about neural network archi-
tectures. Today, we discuss how neural networks can be optimized (involving a lot of chain rule).

We will use o as our activation function in lecture but we can replace this with tanh or ReLU as well.

To optimize a neural network, we want to choose parameters W that minimize the network’s loss. We can
find parameters using gradient descent but we first need to calculate the gradients of network loss with
respect to the parameters:

oL

=g (86)

For some input x,,, the loss function £ measures the difference between the true value y,, and the value f,
our model predicts for x,,. We will use the chain rule because the loss function depends on f,:

oL OL Ofs

- = . 87
ow 0f, OW (87)
Note. f, here is the same as ¢,, which is the model prediction.
9.1.1 Loss function for regression
We have used the least squares loss for regression:
1 oL
Llw) = 52— fu)? = 57 =D (v~ o) (88)

Note. If we swapped L for another loss function, the only change to dw L is 95, L. Ow f, stays the same.

9.1.2 Loss function for classification

For classification, a good function choice is logistic loss. For binary classification, we define

1 1

gy ply=0lz) =1-0(fn) = o5 R (89)

ply = 1) = o(fn)
We can define the logistic loss function using the above terms:

Lw) = ynlogp(y =1]a) + (1 — yn) logp(y = 0|z) =Y ynlogo(fn) + (1 — ya)log (1 — o(fn)). (90)

n

Recall

9.0(2) = o(2)(1 - o(2)) (01)

33

and

05,L0 = U 5o () (1= o) + (1=) T

bl o(f)(1 = o) (-1)

=yn(l—0o(fn)) = (L =yn)o(fn) (92)

We can calculate this if we know what f,, was. To get the gradient, we will use our current weights W to
calculate f, in a forward pass, and use f, to find the gradient using a backward pass to update our step
along the gradient.

Note. We note that for a forward pass, we start with input «,, and move forward through layers of the
model to figure out the output f,. In the backward pass, the values we calculated flow backwards and are
used in chain rule products. The chain rule products become the gradients we are looking for.

9.2 Vector chain rule

We will take a detour to gain tools needed to do back propagation.

Consider if we had nested functions

y=[fw)=fg(h(x), uw=g)=g()), v=nh() (93)

9.2.1 Scalar values

If we had scalars, we can simplify and apply the chain rule:

5 = oudn o o
9.2.2 x a size D vector
Given @« a dimension D vector we note that
Vazy = %%Vfw (95)

where 0,y, 0yu are scalars and Vv is a 1 x D vector describing how each dimension of x affects the scalar
.

Note. We are using numerator layout notation, known as the Jacobian formulation where y, m are size M
and N vectors. Then d,y is a M x N matrix with

Oy Oy .. Oy

ox1 Oxo ox N

Oya. Oy2 ... Oy2
@ | 8z Ox2 orN (96)
Oz : : :

Oym Oym .. Oym

Oz Oxo oz N

OzYy is the Jacobian matrix, denoted J.[y] and the elements tell us how each element of y depend on each
element of x.

9.2.3 x,v size D, J vectors

We have
of
ou

where 0,y is a scalar, V,u is a 1 x J vector and J[v] is a J x D matrix.

Vay = =V,ulg[v] (97)

34

9.2.4 x,v,u size D, J, J vectors
In this case
Vzy = Vuyly[u]J.[v] (98)

where V,y is a 1 x J’' scalar, J,[u] is a J' x J matrix, J[v] is a J x D matrix. We get a vector of how each
x dimension changes scalar y.

9.3 Finishing optimization

Recall previously we had

oL, 0L, 0fn
ow 9f, ow’ (99)
We seek to calculate Oy, f,. Suppose f, = wT¢, + b. Then we have
Ofn
= . 1
g, (100)

Example 9.1 (Regression case). We consider the regression case where we have 95, L, = (yn — fn)(—1)
and Oy, fr, = ¢,, so we have

oL,

ow

(yn *fn)(fl)(bn (101)

and notice that we still need f,, to compute the gradient. We get this term by computing * — ¢,, — f,
and use the value of f, in the gradient.

We recall that ¢, = o(W'z + b'. We can get VL, using

oL,
Vwln = 52 Vo, frlw (9] (102)

9.4 Generalization
The process of computing gradients for optimizing neural networks is:

e Compute L(¢p¥(¢*~1(---¢'(x)))) by passing & through the network & — ¢* — --- — ¢& — L in a
forward pass and store all ¢f.

e Perform the chain-rule backwards:

oL

59 = Vo LI yr-1[¢"] - Tye [0, (103)

We can then compute the parameter gradients

oL L /41 £ 0 L 9¢*

Note. This is called reverse-mode autodiff or back propagation. This is good when y is small and there are
many parameters W. We can also do forward-mode diff. This goes from variable x,; — £, rather than
L, = Tpq. We compute 05, ,¢" and then Op1 ¢? and all the way up.

35

10 February 24th, 2022

Announcements

Homework 2 is due tomorrow

Homework 3 is released tomorrow

Next week is a break! Midterm 1 is on Tuesday, and our ethics module will be on Thursday.
Today’s relevant textbook sections are 5.1-5.3

Today, we discuss support-vector machines.

10.0.1 Introduction and motivation

support vector machines were the workhorse of machine learning. For example, we can use an SVM to
sort cells into different types. Another example is the Casella plant that sorts trash and recycling. We can
manually sort the recycled items, or use SVMs. There is a conveyor belt that takes a picture of the plastics
that move through and using the SVM, we can sort the type of plastic and send it down the right belt.

Note. SVMs are mostly used in classification problems.

10.1 Max margin

The max margin is an objective function that is used in SVMs.
Note. Because this is an objective function, we can use this in other techniques; there is a family of

techniques called margin methods.

In the past, our objective functions included negative log likelihood, squared loss, 0/1 loss, hinge loss, log
loss, etc. For classification, we wanted to start with 0/1 loss but this is difficult to optimize, so we made
proxies. Now we define the max margin objective.

Definition 10.1 (Margin). The margin on a correctly classified example is the absolute normalized or-
thogonal distance to the boundary. The margin on the data is the minimum margin on correctly labeled
examples.

Our goal is to find the separator that mazimizes the margin of the data.

We can consider models that are indifferent between different boundaries. We seek to quantitatively describe
our heuristic choice.

10.2 Hard margin SVM

We can consider a binary classification setting where § = {0, 1}. Moreover, we focus on the linear case where
flz,w) = wTz + wy. (105)

We will also assume that the data are separable. This specifies the hard margin formulation. This hard
margin SVM forces all points to be classified correctly.

10.2.1 Geometric intuition

We can consider a boundary wTx + wg = 0 and wTx + wy = ¢ a parallel line. We can pick an x,, and
decompose x,, = x, + (¢, — x,), where x,, — @, L wTx. Note that x,, — z,||w so we can write

T, = Ip +r (106)

36

We can do some algebra and obtain

T T
wTx, +wy =wTx, + wy e W Tn + Wo (107)
— [wl2 [w]2

where 7 is the signed distance. We can multiply by y, to get the unsigned distance, which is the margin.

Note. We assume that everything is correctly classified, so the margin is always positive.

Then we have

-
margin(z, |w, wy) = y,T, r= %ﬁ-wo. (108)
wi|2

Note. The equation above without normalization is called the functional margin. The margin is invariant
to multiplying the weights by a scale factor g > 0. The margin is also negative on a misclassified example.

We want the minimum margin across all data, and we want to maximize the whole term. Thus we want

1
max min ——y, (wTx, + wp). (109)
i Tl

This finds a separator if our data is separable.

10.2.2 Overparameterization and simplify objective

There are too many parameters in the above expression, where the extra parameters are meaningless.

Note. Consider wT,wy, we can substitute instead the scale factors. Any scale factor of wT, wy works because
they are all perpendicular to the same boundary.

We can then choose our own scale factors with
Yn(wTa, +w) > 1 (110)

and our objective becomes

max —— min y, (wTx, + w) : Yn(WTx, +wy) > 1. (111)
wao [[wlly n
Note (Some intuition). We know that we can scale the weights and the results are the same. We want w to

be small because we are maximizing 1/w and minimize something linear in w. Thus the minimum condition
is redundant and we simply want

min |jw]|3 : Yn(wTx, + wp) > 1. (112)
w,wo

The above equation is nice because it is convex with a quadratic objective and linear constraint.

We can solve this using cvxopt, cvxpy, sklearn.

10.3 Soft margin SVM

We now consider non-separable data. We can have a relaxed soft margin formulation. We can define how
far the point is on the wrong side of the margin using slack variables.

37

Definition 10.2 (Slack variable). We define &,, to be the slack variable for the nth data point. That is

€, = 0, correctly classified, outside margin (113)
"1 - Yn(wTx, + wp), incorrect, inside margin
Now our new formulation of the equations are
in -y C slack (114)
min —— slack,,
wwo [|wl[3
such that
yn(wTwn + wO) >1-&, & > 0. (115)

We are pretending that the margin is 1 and writing our constraint the same way, but allowing for some slack
for misclassified points. If we make C' large, we enforce the constraints more. We can set C using cross
validation, but we can use sklearn to find it automatically. This is still convex, so we can still use solvers.
We can write the equivalent formulation

1
min ifwTw + C’Zmax {0,1 —yp(wTa, +wp)} (116)

w,wo

n

We note that this is a convex function and differentiable almost everywhere so we can optimize using
stochastic gradient descent!

Note. The central idea is that the max margin loss starts penalizing you before we start being wrong and
penalizes us even when we are correct.

38

11 March 1st, 2022

Today is the first midterm.

39

12 March 3rd, 2022

Today, we discuss ethics in machine learning.

We need to be careful about discriminatory stereotyping through data, such as was seen with redlining
policies in the 1930s. In particular, data features that seem nondiscriminatory are often actually proxies for
features like race and income.

Exclusion from a data set is another form of biased data. Consider a model trained on a medical database
with a lot of data on white patients, but little data on people of color. This model may learn harmful
associations that lead to poor care for patients of color, simply because they were not included in the data.
For example it might make predictions as though "people of color are less likely to get sick because they
don’t come to this hospital much", which is clearly undesirable.

Question: Should organizations be prohibited from collecting data on race? This initially sounds like a way
to prevent bias, but it also makes it harder to check our models and systems for bias.

12.1 Causal chains

We can represent decisions in a causal chain of events. There are causal chains where single or multiple
agents can be causally responsible for the outcome.

We note that decisions contribute to the outcome where the decisions are choice points. These choice points
are represented by ovals.

Some outcomes can be traced back to multiple choice points. Some decisions are causally relevant but not
morally loaded. For example, choosing to rob a bank and choosing to drive the a blue or gray getaway car
have different levels of moral relevance.

12.2 Moral responsibility

There is backward-looking responsibility and forward-looking responsibility. Backward-looking includes differ-
ent actions the agent could have done. The agent may deserve blame, penalty, or retribution. Forward-looking
responsibility for an agent is the responsibility to prevent such an outcome in the future.

Example 12.1. Suppose two agents decide to rob a bank. These two agents should not have robbed
a bank and both deserve some retribution, and both agents are obligated to refrain from robbing
another bank.

40

13 March 8th, 2022

Announcements

Today’s relevant textbook sections are 5.4
Homework 3 is due Friday!

Midterms have been graded

Masks are still expected in lecture

Example 13.1 (Credit scores). One interesting application of machine learning and ethics is defining scoring
mechanisms for evaluating or predicting credit scores. We want to consider how transparent we want our
parameters to be.

13.1 SVDMs continued

Recall from last (last) week, we looked at the max margin problem. The idea is that if we have two clusters
of points, there is some intuitive notion of good and bad boundaries — we pick the line that is far from the
data. Assuming a linear boundary, we formalized this notion by defining the margin:

T
margin(e, |w, wy) = y,r, r= %ﬁ-wo (117)
w2

We recall our optimization problems that focus on maximizing the minimum margin. We had a hard margin
problem where we wanted to minimize with respect to w, wp:

1
min §Hw||§ : yn(wTx, +wp) > 1, (118)

w,wo
which is a quadratic objective with linear constraints.

Note. A hard margin refers to separability of data.
We also have a soft margin version where we are not guaranteed separability. The objective is
1
min —~ |lwl|3 + ngn : Yn(wWTx, +wo) > 1 =&, & >0 (119)
w,wy 2

where &, is our slack.

Note. We can stick in a basis if we wanted to as well!

Today, we will discuss how SVM can be efficiently solved for high dimensional . Namely, we will solve the
dual form of the max-margin function, which will allow us to rewrite the discriminant function and use the
kernel trick to learn in high-dimensional bases.

13.2 Reframing the problem

We can reframe the minimization from last class. We can rewrite the hard-margin form as a Lagrangian.
The original form is

1
min —wTw : Yn(wTx, 4+ wo) > 1. (120)
w,wo
We can rewrite this as
1
min [maxﬁ('w, Q, wo)] = min [max {'wT'w - E an, [yn(wTe, + wo) — 1]}] (121)
w,wo e w,wo [e7 2
n

41

with constraint a;,, > 0. We can think about the inner sum as softening the linear constraint I(y, (wTx, +
U}0> > 1).

We can verify that these formulations are equivalent by the following:

1. Optimal solutions satisfy the same constraints. If y, (w7, + wy) — 1 > 0 is violated for some
n, then a, [y, (wTx, + wo) — 1] < 0. Then because the sum is negated, the nth term is positive and
the value approaches oo by setting «,, arbitrarily large. However, we want the max to be small, so a
solution violating this constraint would not be optimal and not be selected.

2. Optimal solution sets «,, = 0Vx,, : y,(wTx, +wo) > 1. If the constraint is satisfied with slack, then
the maximizer makes «,, = 0. We want to keep positive terms so to maximize the entire constraint,
we want to subtract nothing.

3. Optimal solution satisfies o, [y,(wT@, + wp) — 1] = 0¥n. For each n, we either have o, = 0 or
Yn(wTx, +wg) — 1 = 0. The sum term being subtracted will be 0, leaving us with an expression that
is the same as the former expression.

Note. At optimality, the constraints are satisfied, many «,, = 0, and « # 0 for the cases that are met with
equality. These are places where points are close to the margin.

13.2.1 Strong duality

We will now apply strong duality to swap the max and the min.

We will first discuss weak duality. Our Lagrangian formulation reformulated the hard-SVM as a min-of-max
problem. Swapping the max and the min leads to a smaller value. Intuitively, we had to pick w first and
then pick the maximizing c.

But now, if we swap the max and min, we can pick any w we want after « is set, giving the minimizer an
advantage. Thus the minimizer will achieve a value at least as small as before.

min max L(w, a, wg) > max min L(w, o, wy). (122)
w,wo >0 a>0 w,wo

This problem satisfies strong duality where the two sides are equal. We can thus switch the min and the
max.

min max L(w, a, wp) = max min L(w, o, wy). (123)
w,wo >0 a>0 w,wo

The idea is that the property holds because our objective is quadratic and the constraints are linear. This is
easier for us to solve now because we can now rewrite the expression in terms of a only. The optimal w, wq
satisfies

Vw»c =w — Zanynmn =0 < |w= Zanynwn (*)

and

Vwo'c = Z anyn =0 (D)

42

as desired. Then we can expand terms in our reformulated objective:

1
i d S Tap — apT _
Iggé{glgz {2w w—w E O Yn Ty — Wo g QY + E an}
n n n
= max{ E E O O Y Yo T Ty —1—5 an} (124)

with constraints Z AnlYn = 0, a, > 0| where we substituted * and [J and combined like terms.

This is our dual hard-margin formulation of SVM. There is also a soft-margin formulation where we
introduce ¢ with constraint ¢ > «,, > 0 and the discriminant function looks like

h(z, o, wp) =Y anynala + wo (125)

n

with support vectors

Q = {an Qg > O} (126)

The «, are found by the optimization and wq is found by noting that y,(wTx, + wg) = 1 for points on the
decision boundary. Thus can find some point «,, on the decision boundary and use this to find wy.

13.3 Kernel trick

We can consider learning with a basis function ¢ : R? — RM. We need to solve

max {— Z Z Qo Yn Y (x0T (2),) + Z an} (127)

n n'

Note that in the objective, only appears in the inner product and to predict a new x*, we use wTx* +
wo + Y, anypx]x® where the &* appears only in the inner product.

We can thus replace all appearances of ¢ with a kernel function
K(z,z) = ¢(z)"o(2). (128)

This is because the ¢ never appears outside of the produce and we can computer the inner product K
without computing ¢(x), #(z). We can thus take the distance between x,z in a high-dimensional basis
without actually bringing «, z into the high dimension.

Example 13.2 (Quadratic and polynomial kernels). Consider the kernel
K(x,z) = (272)% = (23, 2122, Tow1, 22)T (21, 2120, 2221, 23) = ¢()Tp(2) (129)
where ¢ maps into a basis using all degree-2 terms. For further generalization, we can consider
K(x,z) = (1+x72)? (130)
which is a kernel for the degree-2 basis including linear and constant terms. For ¢ > 2, we have
Kpoy(z,2) = (1+272)4 (131)

which is a kernel for polynomials including all terms up to degree q.

43

Note. For polynomials degree ¢, the basis would have O(D?) terms. Without using the kernel trick, the
computing power for higher bases grow at exponential rate.

Example 13.3 (Gaussian kernel). Consider
L 2
Kgauss(x, z) = exp —XH:I: —z|l3 (132)

with bandwidth A > 0, decays exponentially in squared distance. This corresponds to a basis of infinite
dimension.

13.3.1 Valid kernels

One way to view a kernel K is as a n x n Gram matrix on the data x1,...,x, where K(x,,x!) = ann .

At a high level, we consider Mercer’s theorem that states that K is a valid kernel for some basis <= the
Gram matrix defined by K is positive semidefinite.

44

14 March 10th, 2022

Announcements

Relevant sections for today are chapter 6

Homework 3 is due this Friday

Homework 4 is released tomorrow, but is designed to take one week
Spring break is next week!

14.1 Unsupervised learning

In the supervised case, we predict labels y given data x. In the unsupervised case, we only have & and no
targets. The goal is to summarize the data. This is helpful for

1. Figuring out what classes or labels to use later with data in a supervised learning model

2. Compressing high-dimensional data to lower dimensions

3. Organizing data, like grouping news articles covering the same topic or songs with the same style
together

Today, we will focus on clustering that assumes a discrete structure that is nonprobabilistic. There are two
methods.

Note. We note that there are many clustering model classes, discrete, and continuous.

14.2 k-means

We will first define our problem. We have data xq,...,x, and we want to find k clusters. We want an
algorithm that outputs group assignments z,; where z,; tells us if x,, is in cluster k. That is

0 n Dot in cluster k
an{, I, not in cluster (133)

x,, in cluster k

We need to find a way to measure how different two data points are. Different metrics include the Euclidean
distance, edit distance for text, or Hamming distance. Today, we will use the Euclidean distance

d(z,z') = |z — x'||>. (134)

For k-means clustering, we can define a prototype of cluster k£ denoted ;. This p,;, defines the center point
of cluster k.

14.2.1 The objective

We use the following objective for the k-means problem. We want to find the pus and zs so that x,, are close
to the centers of the clusters they are assigned to:

mind 0> znk@n — py3- (135)
’ k

n

This optimization is NP-hard and non-convex so it is difficult to solve. We can use Lloyd’s algorithm to find
a local optimum.

45

14.2.2 Lloyd’s algorithm

We can find clustering assignments for k-means by the following:

1. Randomly initialize prototypes u,
2. Repeat until converged:

(a) Assign each example to its closest prototype:
T, = argming || @, — py||2 (136)

(b) For each cluster k, set p;, to the centroid (mean) of the examples assigned to this cluster
! E (137)
= — > ZnkT
K Prk ~ nksn

The results of the algorithm will depend on how the prototypes are initialized. We usually restart several
times to find the best solution.

Note (Correctness). On high level, each step reduces loss until convergence. This arrives at some kind of
local minimum.

When we calculate the z’s, we assign each point to the cluster with the closest prototype. This intuitively
minimizes our loss because we are shortening distances.

For p, we can take the derivative of our loss and set it to 0. Note that

L= I?glzzznkuxn — 3 = Zznk(mn =)T (@ — 1) (138)
i k n

n
and

oL 1
= fQZznk(a:n —pp) =0 = p, = N, ;znkm’n (139)

Oy,
which is what we set p;, to when running our algorithm. Thus we monotonically improve the loss.

Note (Selecting k). We can find the number of clusters to pick by plotting the lowest loss achieved for
different k& and pick the k that corresponds to a bend in the loss curve. This is known as the elbow method.

Note (More comments about k-means). k-means is a parametric method where parameters are the proto-
types. This method is inflexible and the decision boundary is linear. The method is fast, update steps can
be parallelized. There are many variations of the basic k-means algorithm:

1. k-means++ gives more specific ways to intializsed clusters
2. k-medoids chooses the center-most data point in the cluster as the prototype instead of the centroid

14.3 Hierarchical agglomerative clustering (HAC)

The HAC algorithm is as follows:

1. Every example starts in its own cluster
2. While there is more than 1 cluster, we merge the two closest clusters

This forms a hierarchy of clusters that can be visualized as a tree over the data where nodes are clusters. A
node @’s children represent the clusters that were at one point merged into node x.

Some features include:

46

HAC is non-parametric

It is deterministic because there is no random initialization

We do not need to specify the number of clusters

Complexity scales as O(Tn?) where T is the number of iterations

We need two measures of distance. We note that d(x,x’) will measure the distance between individual
points. We also need a linkage function that measures the distance between two clusters of points. This is
how we determine what the closest pair of clusters are. Some options include:

e Minimum distance between two elements in the clusters

o Maximum distance between two elements of the clusters

e Average distance between elements in the different clusters
e Distance between the centroids of the clusters

Note. The min linkage is more likely to merge large clusters together. It will also tend to merge clusters
into chains or strings. Max linkage prefers compact clusters instead. The average and centroid linkages are
compromises between the min and max ones.

¢ [
4 TR 4
% & %
1 i A
% # %

W E

S

i

(a) min distance (b) max distance

X

A

(c) average distance (d) centroid distance

47

15 March 22nd, 2022

Announcements

e Problem set 4 is due Friday
e Come take a look at midterms, regrade requests are due Friday
e Relevant textbook sections are 9.1-9.5

15.1 Mixture models

Cube. Unsupervised, discrete, probabilistic.

A mizture model is unsupervised, discrete, and probabilistic model. It is in the same categories as clustering
except for the fact that it is probabilistic. For intuition, instead of clustering data @ into a final cluster z,
we want to capture the fact that @ my have a breakdown of probabilities that z may be a part of.

Example 15.1. Consider heights in a human population. The height of men and women are approximately
Gaussian, with different means and variances. In an unsupervised setting, we get only heights and no the
labels. We know that there is an underlying discrete variable (sex) that leads to two Gaussians, but putting
them together leads to a funky looking distribution. We can deal with this using a mixture model, which
gives us probabilities of being in different clusters (sexes).

15.1.1 Connection to generative classification
Generative classification is the same as mixture models in the sense that it’s discrete and probabilistic, but
generative classification is supervised whereas mixture models are unsupervised.

In generative classification, we told ourselves a story that y generates . In mixture models, we have a z
(hidden variable because there are no y’s) that produces our x. We also have other parameters 0 that affect
our data x as well.

Thus we have z, ~ m, @, ~ p(x,|2zn;0).

In generative classification we did the following:

1. Solved for 6 given data D = {(x;, yi)}fil
2. Solved for y given # and a specific x.

In a mixture model, we only have x so the challenge is to solve despite only having «.

Example 15.2 (Gaussian mixture model). Consider what we did in problem set 2 problems 2-3. First we
can set up the following:

e p(z, = k) = m. This is categorical, analogous to representing three stars
p(x|z = k) = N (ux, X). This is analogous to representing each stars mean and variance.

We can now calculate our log-likelihoods.

We can try complete data log-likelihood log p(x, z|0). This is complete because it assumes we have our
observation & and the class z that & came from.

Note. This does not work unless given z,.

We have

logp(m, Z3 0) = Z log‘p(mn, an) + Ing(Zn; 9) = Z Z Znk IOgN(mn§ M, Zk) + Znk log Tk- (140)

n n k

48

Note that if we are given z,x, solving for the MLE of 7, u,X is easy, which is the same as generative
classification. Without z,, this is hard and non-convex.

We can try log-likelihood. We can argue that we just need), logp(x,;f) and ignore the z’s because the
z’s are just a way for us to summarize the data. WE can integrate out the zs and end up with

p(anl0) = Tk N (@ i,). (141)
k

Here, we are summing across all clusters and for each cluster, we are incorporating 7, by multiplying with
p(@y, 2n;0). We can then substitute it into the full term and obtain

> logp(a,;0) =) log (Z TeN (@ i, Zk))- (142)
n n k

There are no analytic solutions here and the gradients are messy, so we need to try something else.

We can solve this problem with two different methods.

15.2 Max max
This looks like Lloyd’s algorithm:

1. Start with z’s randomly initialized
2. Find MLE of 7, 4, 2 given z (this is possible in the complete data log-likelihood formulation)
3. Find best z given m, i, ¥’s that minimizes the loss.

15.3 Expectation maximization

This method approximates) logp(x,;6). Our goal is to maximize p(x|f).
We can set up the problem by noting that the lower bound on ", logp(x,;0) is given by

> E.[logp(xn, 20;0)]. (143)

Optimizing the log likelihood means optimizing for the worst p(x|f) can be. We can expand the expectation
and obtain

Z Ez [Ing(w'ru Zn; 9)] = Z Z [an logN(wna Kk, Ek) + dnk IOg 71—19]) dnk = p(zn = k‘wna Ty [y E)
n n k
(144)
Intuitively, ¢ is some arbitrary distribution over the k options for z.

Note. Given ¢,x, we can find our parameters 7, i, 2.

15.3.1 The EM algorithm

At a high level, we are going to randomly initialize our parameters and use those to calculate g, = p(z|x;0)
by consider expectations across all z. Then we can find the MLE of parameters p, X5 using the maximization
step. Then with those parameters, we will repeat the expectation step and the maximization step.

Expectation step. We want to find ¢, = p(z, = k|x;0). It turns out that

p(z|z;0) o< p(2;0)p(x|2;0), p(z = kl|z;0) o< mpp(; O). (145)

49

This is easy because we know this by definition. We will generally know all the values we need to plug in.

Maximization step. We need to maximize), F. [logp(%y, 2,;)] which we broke down into components.
We can solve for our parameters given gq,r. Specifically, we maximize this with respect to m, u, > to find
those parameters.

We have
. 1
= o zﬂ: Gnk. (146)

The ¢,x’s indicate how likely we are to belong to a particular cluster and N is the number of data points
in the data set. This tells you what every single data point believes about the likeliness of a given cluster k
which intuitively seems correct.

Moreover, we have

~ Z dnkTn
=== 147

e = S (147)

This is weighted average of the ’s that belong in cluster k, weighted by how probable a given x belongs to

a cluster. This is divided by the expected cluster size to normalize.

And finally, we have

1

Sy = ” D nk(@n —) (@ —)T (148)

2

This is how we normally calculate variance, except we weight the probability of given clusters and divide by
the expected cluster size to normalize.

Overall, we have analytic updates for both the E step and the M step so we call this the EM algorithm.

15.3.2 General properties

The E step is a posterior over local hiddens, which refers to z variables. The M step maximizes over global
parameters.

we have the following properties:

e Monotonically improves the expected complete data likelihood like Lloyd’s
e When we have exponential family distributions, the updates are usually analytic
e We will find a local optima, not a maximum optima

Note. If we have a mixture of Gaussians, and imagine we have a small covariance, then we essentially have
k-means. This is because the gs will essentially become zs, where they approach hard assignments. Small
covariances mean we have a high degree of confidence. Thus given an x, we snap that & to the closest
distribution with almost 100% certainty.

50

16 March 24th, 2022

Announcements

e Today’s relevant textbook sections are chapter 7
e Homework 5 is out on Friday. We are nearing the end of the semester! The practical and homework 6
are left before midterm 2.

16.1 Embeddings and principal component analysis

Cube. Unsupervised, discrete, probabilistic.

In previous lectures, we covered settings with a discrete hidden variable z. In these situations we wanted
to cluster our data into different groups where z told us what group data point @ should go in. Today, we
switch to a continuous z, which we call our embedding. These are embeddings of all the information in the
data x into a z with lower dimension.

Instead of grouping things into k discrete clusters, we will now try to summarize the data into z continuous
dimensions.

Note. Continuous and discrete z are analogs of continuous and discrete h from supervised learning topics
we covered. We were given y previously, but now we do not know what categories or embeddings z are
needed to infer them ourselves.

Today, we will focus on principal component analysis (PCA), a nonprobabilistic embeddings algorithm.

Example 16.1. Consider two-dimensional data on people’s heights and leg lengths and suppose they are
highly correlated. The points all lie very close to some line with positive slope (one dimension). It seems
like we only need one dimension to approximate each piece of our data.

The question today is how to identify this hidden axis?

16.2 Making this linear

Suppose we have N data points x,, with dimension D. Suppose we try to find a set of K D-dimensional
vectors {uy } such that we can approximate some x,, as a linear combination of them:

Ty R Zp1W + ZpoUs + -+ 2Zpgur = Uz, (149)

Here z,, = [znl Zno c-] is a K-dimensional vector that describes the position of & with respect to basis
U. We can think of z,, as a vector and U as a matrix with rows corresponding to uy’s.

We are interested in cases where K < D which means we are compressing the data from D to K dimensions.
We are embedding D-dimensional data into K dimensions.

16.2.1 Minimizing the reconstruction error

We want our approximation of x,, to be accurate. The loss we want to look at is a measure of the difference
between x,, and the approximation Uz,:

N
1
L ({zn}nNzla U) = N Z |, — Uzn”% (150)

where x,, is D x 1, U is D x K and z, is K x 1, the vector embedding. We are trying to minimize the
reconstruction error.

51

16.2.2 Adding constraints

The solution to the above is not unique. Note that U = UQQ ™! where @ is some K x K invertible matrix.
This means we can set U’ = UQ, z' = Q~ 'z and obtain the same loss as before.

We can add constraints to reduce the symmetries in the loss, while adding some nice properties. Depending
on the application, we might want U to be sparse or for U to be non-negative.

Today, we will add the constraint that U is orthonormal. That is, we have:

e (uy,ur) = 1, which is unit scaling
o (uy,uk) = Ok, which is orthogonality

We get some nice linear algebra properties. We can recover z given . Consider multiplying by U on both
sides

©,UT = 20 UL UT + -+ 20 UpUT = .U = 2 UpUT = @, U7 = 20 — . (151)

16.2.3 Simplifying the problem

Instead of reconstructing «,,, we can try to reconstruct the difference in the data from the mean . We can
write

z,~xT+Uz, (152)

where we interpret Uz,, as a perturbation from the mean. Our new optimization is as follows:
1 _
L(z,u) =+ ; (@0 —) — Uznl3 (153)

where we now try to reconstruct (z,, —). We keep the orthonormality of U as a requirement. From linear
algebra, we know that if K’ = D, we incur no loss and have perfect reconstruction.

We can imagine that we have extra Ugy1,...,Uy to rewrite the following:
Ty, =21 U1+ -+ 2,:U+ -+ 2,pUp + . (154)
Then we can substitute this into our loss and we have

L(z,u) = %Z

2
n 2

D K
Z anUd - Z anUd
d=1 d=1
1
=¥ Z

n

D
> znala

d=K+1

:Ji/_?(Z zndUd> (Z anUJ>- (155)

2
2 d=K+1 d=K+1

Due to orthonormality, U] Uy = 644 and we have

D
1
L(zu) =+ Yo 2 (156)
n d=K-+1
Substituting in z,q = U] (x, — &), we have

D D
L(z,u) = %Z Y Ul@n—a)(@n —2)Us= Y U] % D (@n —) (0 —)T Uy (157)

n d=K+1 d=K+1 n

>

52

where the middle term is the empirical covariance of &, 3! Thus we have

D
L(zu)= Y UISU, (158)
d=K+1

as our objective.

16.3 Solving to minimize reconstruction error

We want to solve for the U that minimizes the above equation with the constraint that UTU = 1.

Note (K =1). If K =1, we note that there is only one U to solve for:
ml}n UTXU such that UTU = 1. (159)

We can put this constraint in via a Lagrange multiplier to create our objective function:
mUinUTEU+)\(1 —UTD). (160)

Then

Vil =%u-u=0 = (161)

and thus, the solution is an eigenvector of the sample covariance. We now go back to the main problem
given this information.

Recall that the overall goal is to minimize the reconstruction error. Then to minimize, we choose U such
that A is smallest.

It turns out that we can do this is we leave out the directions with the smallest eigenvalues. This is like
making sure the error is small. Another perspective is that we can minimize the error when we keep the
eigenvectors with the top K eigenvalues of 3. This computation is easy using singular value decomposition
(SVD). Because X is symmetric, it is guaranteed to have D real eigenvalues by the spectral theorem.

Note. The principal components are the top eigenvectors, which get preserved for us in reconstruction. This
is what PCA refers to.

16.4 Alternative view: Preserving variance

We can think about this problem as a variance problem. Instead of minimizing the reconstruction error, we
can think about it as variance preservation. We want the vectors that capture the most variance in the data
x. If our bases pointed in directions where the data did not vary, then scaling along them would not be
useful for better approximating the data.

Suppose we wanted a single vector u that captured most of the variance in «
z=UTx. (162)
Where z a scalar. We have
Var(z) = UTVar(x)U = UTXU (163)
with the constraint UTU = 1. We want to mazimize Var(z):

max UTXU such that UTU = 1. (164)

When we repeat the steps and applying the Lagrange multiplier, we see that 3u = Au where we pick the
largest .

53

Note (Uniqueness and application). The subspace found by PCA is unique, but other good orthonormal
solutions exist too! They just aren’t found by PCA.

Also, when doing PCA, remember to subtract the mean! Forgetting to subtract the mean will affect our
results.

54

17 March 29th, 2022

Announcements

1. The practical is out!
2. Homework 5 is out
3. Today’s relevant textbooks sections are 9.6

Today is the day we finish off the entire cube! We have done supervised and unsupervised probabilistic
and non-probabilistic discrete structures. Last time we discussed non-probabilistic methods for continuous
structures for PCA and today, we will look at probabilistic methods. Next time, we will look at more types
of model classes and go deeper into the methods discussed previously.

We will finish off the semester with reinforcement learning. Rather than making predictions about the data,
we will focus on making decisions.

Today, we discuss topic modeling.

17.1 Probabilistic embeddings

Topic models were initially designed to organize text collections.

Example 17.1 (Pompeii). There was a study that was done in Pompeii where they looked at rooms in
households. They marked down the objects they round and their counts and used a topic model to determine
the purpose of the room. They noted objects like doors, chests, cupboards, glass bottles, etc. The reason
this is probabilistic is because each room can have more than one purpose. Thus we use a topic model.

17.2 Variations of probabilistic embeddings

We first look at the variations of probabilistic embeddings. Embeddings means unsupervised with continuous
z. We will later go into a specific example within probabilistic embeddings.

Recall that the set up is that our zs generate the ws.

17.2.1 Factor analysis

Consider
zn ~ N(0,1), A~ N(,1), Ty ~N =Az+e. (165)

In factor analysis, we have some z length k& drawn from some normal distribution and « is given by some
Az + e where A is D x k and ¢ is some noise.

This is an example of a probabilistic model where we posit that there is some latent k-dimensional z that
leads to the data to become a D-dimensional x.

Note. All this stuff is Gaussian. If we recall linear regression, this is basically what we have here. We have
x = Az +e. If A is observed, we are doing linear regression on the z’s and vice versa.

17.2.2 Variational autoencoder

We again have

z~N(0,1) (166)

55

with
x = fo(z) +e, e ~N(0,1). (167)

Here, our fy can be nonlinear with respect to z where fy is a neural network characterized by 6, the global
parameters.

Note. Now the inference is harder. In particular, picking out the local z,|x,, 0 is hard. In practice, we
learn an inference network by making the simplification

p(z|x,) = gy(x) (168)
where g4 is a new neural network with parameters ¢.

Note. More variations exist! But all approaches are trying to compress the data into something that makes
sense. From a use perspective, we want to ask ourselves what we need.

17.3 Topic models

We are now going to discuss topic models. While this is a specific model, many concepts and patterns are
generalizable.

For some motivation, suppose we have high-dimensional discrete data. For example, codes in a health record.
We believe that these counts of discrete items comes from a lower-dimensional structure (like a disease). We
can imagine that a disease can lead to many kinds of health codes.

Example 17.2 (Restaurants). Another perspective in another context is restaurants. A restaurant may
have a general food type or fusion of food types z that affects menu items «.

Example 17.3 (Documents). We can also think about document analysis. Each document has a mixture
of document types that affect the specific words on the document and the counts of words on the document.

17.3.1 The mathematics

To think more concretely, we note that the model is a mixture of multinomials.

Parameters for seeing d items (given mixture k). We have
6y ~ Dir(8) (169)
is a D-dimensional vector that describes the probability of seeing item d if we are in mixture k.

Example 17.4. If k£ = 0 represents heart disease, 6 tells us the distribution of codes given the person has
a heart disease and Dir(8) represents the distribution of codes.

Parameters for probabilities of being in mixture k. We have
7, ~ Dir(a) (170)

is K-dimensional and tells us the proportions of each @ in data x,,.

17.3.2 Procedure to create x,,

x,, is a count vector of items per data point which we observe.

Example 17.5 (Pompeii continued). In the Pompeii example, this can be like 3 chairs, 2 chests, 0 spoons,
etc.

56

We will look into how the x,,’s are created.

We first create the 0’s. For each data point x,,, we are going to sample 7y ~ Dir(«) and then we use our
7,8 to create data x,,. Namely, we have

, ~ Mult(07,, L) (171)
where L is the total number of codes, menu items, or words.

Note. When we multiply 8 (D x K) and 7 (K X 1), we get the probabilities for items in @ which is D x 1.
We will then have the final probabilities we need for a given patient, and we enter this in as the parameters
for the multinomial, with our x,, generated by the distribution. We can consider each probability in this
D x 1 output matrix multiplied by the length L to estimate the count of words in the corpus.

Note (Connection to unsupervised setting). In unsupervised learning, our z,, produces x,, and w (global
variables) also affect @,,. Here, z,, corresponds to 7, and w corresponds to 6.

17.4 Dirichlet distributions

We need a process to create 7. In earlier lectures, we had z distributed as a Gaussian. Now we need the
following:

0< e <1, Znnk =1. (172)
k

We need to follow these constraints so we have a probability distribution we can interpret.

Note. The sum of m,; over all categories is 1 because the document must lie in some proportion of each of
these categories.

We do not want any of these values to be negative because we are trying to define the strength of existence
of attributes. We cannot have negative counts/attributes which is possible with a Gaussian distribution.

We can define the Dirichlet distribution as

K
Dir(m|a) o H L (173)
k=1

Note that this is similar to a Beta distribution given by
Beta(pla, 8) = p*~ (1 —p)° ", (174)

17.5 Relationship with discrete mixtures

We can think about how topic models tie into mixture models and factor analysis.

17.5.1 Mixture models

Recall that for mixture models, we have
zp ~ Cat(m), Ty = Uy, +E. (175)
where 7 is a distribution over k mixture classes.
17.5.2 Topic models
Note that

7, ~ Dir(a), T, ~ Mult(07,, L). (176)

57

17.5.3 Factor analysis
In factor analysis, recall that
zn ~N(0,1), T, = Az, +e. (177)
17.5.4 Comparisons
Note that the idea is in the same way that in mixture models and factor analysis, z,, determines our x,, after

incorporating global parameters. In topic models, once we have 7,, we can create x, after incorporating
our global parameter 6.

The differences is that in topic models and factor analysis, our 7 and z are continuous whereas they are
discrete.

17.6 Inference

We will now continue with topic models and move to inference.

17.6.1 Generative model

We start with the generative model:

p(@|w,0) =[] (Z Wkekd> (178)
d k

where), 7,04 represents the probability of dimension d, &4 represents the number of times element d was
observed and (>, m,0kq)"* represents the probability of seeing x4. We then take a product over d to have
the probability of « overall.

We can then take the log and obtain

log p(x|m, 0) = Zxd logZﬂkad. (179)
d k

This is tricky because there is a sum in the logarithm!

17.6.2 A new equivalent generative model

We will now assume that 6 is a global parameter where

6 ~ Dir(8). (180)
Locally, for each n, we model the following:
7, ~ Dir(a) (181)
and for each | € L we have
Zn ~ Cat(my,), wy ~ Cat(0,,) (182)

where x,, then keeps counts of w;.

Under this new model, the new proposal is to generate data for a new patient. We first determine the
mixture weights of the different diseases. For simplicity, suppose some oracle tells us the patient has the L,,.
Once we know this, for each given code, we can ask what disease we are (the z,; ~ Cat(m,)). Then, once
we pick the disease, we can pick the code given we know that the disease is (w,; ~ Cat(0y,,).

This is known as the bag of words representation.

58

17.6.3 Motivation

We did this because in the original setup, it was impossible to solve easily because EM algorithm would not
work. Given 6, it would be hard to find 7 and given 7, it is still hard to find 8. We can introduce a new
variable z that lets us to EM. The new likelihood is

p(z|z,7,0) HH@ wai=dlzni—y (183)

where [, is a product over all words in the document, [], is the product over all possible word assignments,
[1, represents the product over all topics/mixtures and @g; is the probability of a particular dimension
occurring with indicators that check for the right topic. Thus

log p(x|z,,0) ZZZ]I (wpy = d)1(zp = k). (184)
Now we want to get the rest of what we need to do the EM algorithm:
) =[5, p) =[x (185)
k k

Then

log p(x, z,7|0) uZ{lZ (ak—l—l—Z]l(znl =k)) log 7y,
k

n l

+ Z Z [Z]l(wln = d)]l(zln = k)‘| log edk} .
e (186)

Note. Note that 1(w;, = d) is known and fixed. This means that for inference, we can run EM where we
take expectations across with respect to z, which turns the indicators into g;,,’s and then maximize with
respect to 0 and 7.

By rewriting the inference in this way, it lets us apply the EM algorithm.

17.6.4 Alternative derivation from lecture

We can consider the joint probability where 7, is a variable and 6 is a parameter. We need

pxn;ﬂ-ne p$n7ﬂn0 p(xn|my, 0) p(mw,|0 187
| H | l:[(]) (()) (187)
P(Tn

Note. We are using 7, because in the topic model literature, we introduce a new variable z, that is used
in a slightly different way. In 181, however 7, is our z,,.

Then

p(xp, 7,]0) = H H [Z WnkBkd] (H 71'2’“_1> . (188)
k k

n d

prob. of word d in document prior

This makes sense, but it is messy to solve because of the log in the sum. We can take a logarithm of this
expression, but this won’t separate.

Thus to make inference easier, we will add a new variable. We can consider a new generative model where
» ~ Dir(a) (189)

and for each [in L, let
zZn, ~ Cat(my,), wy; ~ Cat(6y,,) (190)

where we first pick the topic that a word came from z,,; and then we pick out the actual word w,,;.

59

Note. x, corresponds to counts of wy;.

Moreover, this is equivalent because if we integrate out the z,;, we recover the initial formulation.

Note (Machine learning trick). This trick is out of scope of the class. Adding an augmenting variable while
leaving the original expression unchanged is a general machine learning trick.

We can try again with this new formulation:

(T, T, {{an}f=1}fy=1l9) = Hp(ﬂn) Hp(znl|7"n)p(wnl‘znl7 0) (191)
n l

Note. Once we know which topic we belong to, we don’t need to know the 7. In the graphical model, we

have
0
w%z&»w%w

Then we can do some algebra and recover the complete data log-likelihood given by

log p(x, z,7|6) x Z { [Z (ak -1+ Z]l(znl = k)) log s | + ZZ lz 1(wy, = d)l(z, = k)] logedk} .
1 d k 1

n k
(192)

Note (Observations). Given z, we can easily solve for 8, 7. Moreover, given 7, 6, solving for the best z is
also easy. This is because p(zni|wni, Tn, Ow,,, X 720, .. Finally, note that we can apply EM to find
best parameters.

60

18 March 31st, 2022

Announcements

e Today’s relevant readings are chapter 8
e There are two options for the practical due date
e Do some practice problems to get familiar with the material!

Last time, we finished the cube! Today, we are going to move beyond the cube. We can think of graphical
models as a way of describing more complex relationships between variables than those we have seen so far
in supervised and unsupervised learning.

18.1 Graphical models

Graphical models provide a structured representation of the probabilistic relationships in a problem. Graph-
ical models help us visualize and communicate about models.

Example 18.1 (Lung cancer). We can consider some observation & where one component is smoking,
another is lung cancer, another is age, etc. There can be some underlying statistical structure or dependence
between the components. Graphical models help us model these relationships.

We have already been informally drawing graphical models for a long time. In sueprvised learning, we
considered cases where a hidden variable y generated x’s (generative), or a hidden label & generated by
y’s (discriminative). We diagrammed the generative scenario with an arrow pointing from y — @ and the
discriminative scenario with an arry from x — y.

Example 18.2 (Mixture models). More recently, we have seen scenarios with more complicated diagrams
with hidden z’s that generated x’s. Wew draw this in a plate to denote that we have a whole set of N z’s
generated this way. The 2z’s and x’s were affected by our parameters 7, u, 3. This tells us we can factor the
joint distribution as

(01 (2, 20 }1000) = p(m) [[2(00) [T (el m)p(@alen. {66}) (193)
k n

Example 18.3 (Topic models). We also saw topic models, which led to more complicated diagrams.

These diagrams help encode the structure of the data, including relationships between variables.

Note. All the probability models from 181 are examples of directed acyclic graphs (DAGs). These are
Bayesian networks that have no cycles.

18.1.1 Notation and rules
The notation we use in graphical models is as follows:

1. Random variables are represented by an open circle. If we observe a random variable of a given model,

then we shade it in. Otherwise, it is open.

Deterministic parameters are represented by a tight, small dot.

3. Arrows indicate the probabilistic dependence relationship between different random variables and pa-
rameters. An arrow X — Y means Y depends on X.

4. Plates, or boxes, indicate repeated sets of variables. Often there will be a number in one of the corners
indicating how many times the variable is repeated.

N

Example 18.4 (Plates). Consider data D = {(z;,y;}X, drawn from X, Y, we can draw a plate around
X,Y with N in the corner.

61

18.2 Bayesian networks

A Bayesian network is a special kind of graphical model. Bayesian networks (Bayes nets) are directed
acyclic graphs (DAGs) where nodes represent random variables and directed arrows represent dependency
relationships between random variables. In a DAG, nodes have directed arrows between them and there are
no cycles. We can thus simplify (and factor) joint probabilities nicely.

Bayes nets are useful for the following:
1. For inference: knowing which variables are independent helps us determine when we can use block

coordinate ascent to infer their values
2. For learning: Bayes nets allow us to learn smaller distributions, or distributions with fewer parameters

18.2.1 d-separation

We first define the principle of local independence: every node is conditionally independent of its non-
descendants given its parents.

Note. We will use L to denote conditional independence.

When we discuss d-separation, we use the term information flow to describe dependencies between variables.
If there is information flowing from A — B = A, B are conditionally dependent given the observed random

variables. In contrast, A, B are blocked means that A, B are conditionally independent given the observed
random variables.

Thus two variables A, B are d-separated, or independent, if every undirected path from A — Bis blocked.
There are several ways a path can be blocked:

A— C — B, A<+ C «+ B, A+ C — B, A—-C+ B (194)

In the first three cases, the path is blocked if C' is observed. The last case, the path is blocked if C is not
observed.

18.3 Uniqueness and parameters
18.3.1 Uniqueness

Under a causal interpretation, A causes B and we cannot say B causes A. Under a statistical interpretation,
we think about how knowing A informs us about the distribution of B. Similarly, knowing B informs us
about the distribution of A.

We can write a joint distribution two ways:
A— B:p(A,B) =p(A)p(Bl|4), B— A:p(A,B)=pB)p(AB). (195)

Note. Though the statistical interpretation allows multiple orderings, one ordering may require the fewest
parameters and contain the most independences.

18.3.2 Parameter counting
We can think about how many parameters we need to express our nets. Let e; denote the number of incoming
edges to a node. Assuming binary variables, each node requires 2¢ parameters.

Suppose we wanted a different ordering. This different ordering may admit an expression that requires fewer
parameters.

Note (Re-ording the network). We can change the topology of the net while preserving the same depen-
dencies.

62

18.4 Beyond Bayes networks

There are more graphical models! Below are two other variations.

18.4.1 Undirected models

Undirected models are graphs where edges between random variables are undirected.

The joint distribution can be factored as
1

where z is some normalization constant and ¢ a function.

These are popular in settings like image segmentation. In practice, they are hard because finding the
normalization constant z that makes the joint probability a valid distribution is hard.

18.4.2 Factor graphs

In factor graphs, variables connect to their factors, which are denoted by shaded nodes. Each shaded node
corresponds to a ¢. The joint distribution of a factor graph can be written as

p(A, B, C, D) = ¢(A>C>¢(AvB)¢(B7C)¢(CvD) (197)

Each of the ¢(-) terms is created by examining each of the factor nodes and including the variables that are
connected by each factor.

Factor graphs are more expressive than undirected graphs. We see that an additional factor term ¢(B, C)
is in this expression. This cannot have been specified in our undirected graphical model.

63

19 April 5th, 2022

Announcements
e Professor Finale’s son tested positive for COVID. Thursday lecture will be remote.

Last time, we started adding structure to p(x). The goal of probabilistic unsupervised learning is to model
p(x). Similarly, the goal of probabilistic supervised learning methods is to model p(y|x).

Today, we will discuss inference.

19.1 Bayesian networks review

Last time, we defined Bayesian networks and we saw how they are useful in the probabilistic setting regardless
of whether we are in the unsupervised or supervised world because it helps us describe the structure in the
data.

Note (Concept check). In last lecture’s concept check, we found that continuous cases have less parameters.
This is because in the continuous case, we restricted to a very specific class (linear). In the discrete case, we
consider all distributions.

Example 19.1. We can check the hypothesis that smoking causes lung cancer with Bayes nets. Note that
this was actually resolved by testing smoking with animals.

19.2 Inference
19.2.1 Setup

Given the following graph:

J

D

We can ask about different conditionals and marginals, for example p(D), p(D|A), etc. We can infer different
things about the data. The usual procedure is to write out the joint distribution and marginalize out what
we do not need.

For example, we can do the following:

K K K
p(D)= 3 p(A.B,C,D) =3 3 3" p(A)p(B)p(C|B. A)p(D|C) (198)

A,B,C A=1B=1C=1

Here, we suppose each feature has K values. This is a general property and note that this requires K*
computational steps.

64

19.2.2 Specific example: Rain and sprinkler

We can try an example involving rain R, sprinkler S and wet grass W.

R S

NI

where p(S) = 1/2,p(R) = 1/4. We can consider the actual distribution of p(W|S, R).

Suppose we are looking for

p(R,W)
RW) =—"—. 199
p(RIW) =P (199)
We can then essentially to LOTP and expand. We get that
p(R,W,S = 0) + p(R, W, = 1) 21
W) = = — 2
PRI) = R W 5 =0) 4 (R, W,5 = 1) + (R, W,5 =0) T p(Be, W.5=1) 51 20

where p(W, R, S) = p(W|R, S)p(R)p(S) because this is how we factor the joint given the Bayesian network.
This is greater than our prior because the probability of raining is greater given the grass is wet.

We can do the same for the conditional probability p(R|W,S) and we see that

_p(RW,S) _ p(WIR, S)p(R)p(S5) _u
PRI =2 W sy~ pOWIR S)pURIp(S) + p(WIRe, Sp(RIp(S) 41 2o

which is close to the prior 0.25. This makes sense because we saw that sprinklers were on, which reduces the
probability that it has rained because the sprinkler helped explain the wet grass.

We can do this once more to find

o p(WIR, S°)p(R)p(S°) B
PURIWS) = TR, S9p()p(59) + p(W |7, SOp(B)p() (202)

Which is what we expected because we set p(W¢|R¢, S¢) = 0 which means that if it it did not rain and the
sprinkler was off, the grass cannot be wet.

19.2.3 Choosing the order of elimination

We can now go back to our original diagram

A B

NI

|

65

Suppose we want to find p(D). We noted that

p(D)= 3 p(A,B.C.D) =333 p(A)p(B)p(ClA, B)p(DIC). (203)
C

A,B,C A B

The question is what order we should do the summations. We can choose an ordering
> p(DIC)) p(B Zp p(C|A, B) (204)
c B

which is a top-down approach. We marginalize each node.

Note (Geometric intuition). The summation over A is hitting a K-dimensional cube with a K-dimensional
vector. We will end with something that is a K x K sized object. We then apply a vector size K to
marginalize out B and finally in the last sum, this gives a quantity size K, which is the solution.

Thus this computation is now only K3, which is better than our original K* computations.

19.3 Minimum cost of inference

How do we determine the minimum cost of inference? This depends on something called treewidth.

Note. In general, choosing an optimal ordering of marginalization is NP-hard. However, for a polytree, we
have a strategy.

Definition 19.2 (Polytree). A polytree is a directed acyclic graph whose underlying undirected graph is a
tree, that is, it is both connected and acyclic.

19.3.1 Optimal order for polytrees

There are two steps.

Step 1. First, we prune variables that are descendants of the queried or evidenced variables.

Example 19.3 (Pruning). For example in p(B|A), B is the query and A is the evidence. Thus, if we have
the following;:

A B c

we can eliminate C. The intuition is that in the math, we do the following;:

p(BJA=1) Zp (B,A,C) =Y p(BIA)p(C|B) = p(B|A) Y _p(C|B) (205)
C

where the key is that > p(C|B) = 1 because we do not care about C' and when we take the sum, it becomes
1. Thus we can prune the descendants.

Step 2. Next, we find the leaves and work backwards. What is important is finding the leaves (ignoring the
directions of the edges) and working backwards to the query.

Example 19.4 (Finding leaves). Consider the following diagram:

66

C

F

Suppose we are looking at p(E|D). First, we removed F immediately from step 1, since it is a descendant
of E.

Note. We cannot remove B because even though it is a descendant of D, it is an ancestor of F. We need
to focus on the variables we need to sum out, namely A, B, C.

Because we work from the leaves inward, we note that we need to remove C' last. We can eliminate in two
orders: A, B,C or B, A,C.

These two steps will result in the most optimal order for polytrees.

19.4 Preview: Hidden Markov models

Next lecture, we will look at the hidden Markov model.

One example of this is the following:

[L

We can imagine the top represents some time series of a true location we want to track and E, F, G correspond
to radar measurements. When the plane is at position {A, B, C}, the radar said it was at {E, F, G}. Now,
we want to know the probability of the current location of the plane given the last three sets of radar
measurements.

Suppose we have discrete values and observed the radar to tell us that £ = F = G = 1 and suppose we are
looking for p(C|E, F,G). Then

p(CIE,F.G) <Yy p(A)p(E|A)p(BIA)p(F|B)p(C|B)p(G|O). (206)
A B

We can determine the order of elimination because these are also polytrees! There are no descendants to
prune away. In this case, we work from the leaves towards the query, so we want to eliminate A and then
B. Thus we have the ordering

p(GIC) Y p(FIB)p(CIB) Y p(A)p(E|A)p(B|A). (207)
B A

67

When we sum out A, p(B|A) is K x K and after summing we get a single vector dimension K, factor g(B).
When we sum out B, we get another K-sized factor g(C).

These factors are often called messages.

If we sum a different way, we get different factors that differ in both computation and memory.

19.5 Final notes

There are many algorithms for exact inference, but they are all the same ideas we covered. There is some
terminology.

e Sum-product: This is equivalent to exact inference. It is also called this because our equations are
sums of products.

e Forward-backwards: This is equivalent to the specific sum product idea for hidden Markov models.

e Junction-tree: This occurs more in the theory literature, and refers to specific type of tree structures
like polytrees.

68

20 April Tth, 2022

Announcements

e Professor Doshi-Velez’s son is doing ok!
e Today’s relevant sections are chapter 10

Today, we discuss hidden Markov models. It is our last day discussing unsupervised learning. More specifi-
cally, we discuss a time series model.

20.0.1 Review

Recall that our goal in unsupervised learning is to model the data p(x) because by capturing p(x) in a
probabilistic approach, we are capturing the structure of the data. In the last two lectures, we want to
consider if there is indeed structure in p(x) if has multiple dimensions that have interesting conditional
independence relations.

We noted that relationships can be used to perform inference more efficiently.

20.1 Time series and hidden Markov models

Hidden Markov models are a specific Bayesian network form for studying time series. The idea is that we
are observing something that changes over time. We have an evolving latent state z where z; is the value of
the state at time ¢. The time goes from ¢ € [0, 7] where T is the last time-step we measure at.

For today, z is a discrete variable that can take one of K possible values. We do not know the true values of
z but each z; produces some measurement x; that we can observe. In particular, the Bayesian net is given
by

Z1 22 z3 2T
x T2 T3 T

Note. The z’s are our local variables that describe some hidden unobserved structure. The x; are the
observed vectors.

20.1.1 Global parameters

There are both global and local unknowns that we want to infer.

The three main global parameters are
e po(z): The prior. This tells us what state we start in and gives us distribution of z;, where we start.
e pr(zi+1|2t): The transition probabilities. The distribution of the next z given the current z.

e po(x|z): The global emission probabilities which is the distribution of & given the current z.

The local unknowns are the latent states z1,2o,..., 2.

69

20.2 Questions we want to answer
20.2.1 Collection 1: Given globals, solve for locals

Given pg, T, €2, we want to find things about z,x. Some specific values are

1. Filtering. We want to find
p(ze| X1, ... @) (208)

This is real-time prediction. We can only use the data observed so far to make a prediction about time
t.

Example 20.1 (Missile detection). We can say «’s are radar measurements and z is the potential
location of a missile. We want to use the data so far to estimate the current location of the missile.

2. Smoothing. We want to find
p(zt|a:1,...,wT). (209)
This is afterward inference. We use data from before and after time ¢ to make a prediction about .

Example 20.2 (Bird songs). We can use all information from collected audio to determine if a par-
ticular bird was singing at time .

3. Probability of sequence. We want

p(x1,..., 7). (210)
This is the probability that a particular sequence occurred. This is useful for model selection.

Example 20.3 (Audio continued). Suppose we want to detect outliers in the audio and determine
whether a section of the recording was background noise. We can use the probability of the sequence
of tell if the audio was an outlier.

4. Predict measurements. We want to predict the next observation x;:

p($t|$1,...,$t_1). (211)

Example 20.4 (Hospital usage). We may want to predict the hospital utilization rate tomorrow given
what has happened so far.

5. Best path. We want to find the best latents:

argmaxp(zy,...,27|®1,...,T7). (212)
z

Example 20.5 (Set of spoken words). Suppose we have audio of someone speaking and we want to
find the most probable set of words they have spoken that would produce the data in the recording.

Note. We have seen the first four problems! They all have the form p(:|-) that requires various conditionals
and marginals of the joint distribution p(x1,..., 1, 21,...,27).

20.3 Collection 2: Given «’s, solve for globals

We also want to learn the globals given x. Specifically, given (1, ..., zr), we want to find the MLE or MAP
of Po, T, Q.

70

This is important because we need to learn some value before solving problems in collection 1. The full joint
probability in an HMM is

T T
p(azl, PRSP i AN/ I ,ZT) = po(zl) HPT(Zt+1|Zt) HpQ(.’Et|Zt) (213)
t=1 t=1 B'

where A is all the terms from transition probabilities and B is all the terms from the observation probabilities.

Note. We can evaluate p(z1,...,zr|®1,...,27) up to a constant factor by looking at the joint but if we
wanted to look at something like p(z¢|@1, ..., @), we need to marginalize out all of the z’s at other times.

The forward-backward algorithm (FBA) does this efficiently. It is a special case of the inference methods we
covered last week.

20.4 Forward-backward algorithm: Solving questions in collection 1

Recall that collection 1 problems involve problems when pg, T,) are known.

20.4.1 Intuition

The intuition we will use is that in the network, we have a time-series structure. If we wanted to know
something about z;. There are three sources of information information: from the past, from the future, and
there is the present. In particular, for efficient inference, we consider information from the past and present
as one factor and information from the future as another factor.

Formally, we will have « terms that are messages that feed information forward and (S terms that are
messages that feed information backwards.

20.4.2 The forward pass and o;.

Let us consider
p(zhwlw"amt)' (214)
Note. This joint is interesting because

_ p(ze =k, @1,...,x)
Pz =g @1, x)

p(zt:]{|$1’...,$t) O(p(Zt:k7CE1,...,CEt) (215)

and if z; is discrete, this proportionality is relatively easy to solve.

We can define the following;:

lau(2) = p(zi, @1,). | (216)

oy is a K-dimensional vector where the ¢th entry is the case where agi) = «ay(z¢ = 1), that is, this corresponds

to the case z; = 1.

We can explicitly marginalize z;—; and using our knowledge of the structure, we have

K
Oét(Z) = Z p(zt—hztamla"'amt) = Z P(wt\Zt)P(Zt|Zt—1)P(Zt—1a331,-~~,~’Et)
zt—1=1 zt—1=1

K
=plailz) Y plalz) aa(zi). (217)

size K Zi—1=1 K x K matrix size K

71

Note. This sets us up for some dynamic programming solution. This is how we can efficiently calculate the
« coefficients.

We can define the base case and the general case:

oi(z) = pO(Zl)pQ(:Bﬂzl)’ =1
(=) {[Zz’ a1 (2Npr (2|2 pa(xt|z), t#1 (218)

where 2’ indicates all possible values for z; 1. In the recursive expression, the left term is getting the
previous a;—1(z’) and accounting for the transition probability of going into the current state. The other
term incorporates information about our current observation.

20.4.3 The backward pass and (;.

[; is similar to o but we use information from the future instead of the past. It is a K-dimensional vector
where the ith entry corresponds to z; in class 1.

Note (Motivation). For motivation, we consider the smoothing problem, where we need

p(ztywh cee 7wT) :p(wla .. 'awtazt)p(wt-i-h cee 7wT|Zta$1, e awt) = p(wh .. 'amtazt)p(wt-‘rlv cee 7wT|Zt)

forward pass « backward pass (8

(219)

We know how to get the a; factors. We will now discuss how to efficiently compute the second term, [;.

We will define

‘&(zt =k) =p(@iy1,. .., e7|2t = k). ‘ (220)

We can employ the same trick (explicitly marginalizing and using the underlying structure) as above and
obtain

K K
Bi(z) = Y p@irrse o mrzenlz) = Y p@alzg) p@i, o mrlzg) plaigala)
ze1=1 2e41=1 pservation future events transition probability
K
= Y p@elz)p(zlz) B (i) (221)
zt41=1

so instead of working from the front, we work from the last event and move backwards. The convention we
use is that Br(zr) = 1 because there is no information for ¢t = T'.

The recursive expressions for 3 are

! t=1T
o 7 222
Bt(t) {Ez’ 5t+1(z/)pT(zl|Zt)pQ($t+1|Z/), t£T ()

as desired.

20.4.4 Solving questions in collection 1

We now return to solving our tasks.

72

1. Filtering. Now we have

p(ze|E1, ... @) X ap(2e). (223)
2. Smoothing. Note that

p(ze|®1, ... x7) < ar(ze)Be(2t). (224)

3. Probability of sequence. We want

K
p(x1,...,xr) = Z ar(zr). (225)
ZT:1

Recall that ar(zr) = p(zr, @1, . .., T7) so we simply need to take the joint distribution and marginalize

out all values of T.

4. Predict measurements. We wanted

p(wh s 7wt+1) Zzt+1 at+1(zt+1)
P 1|1y .-, &) = = 226
(t+ | 1 t) p(m17~-~,mt) Zzt at(zt) ()
20.4.5 Viterbi algorithm for best path problem
The only problem we do not know how to solve is the best path problem. Recall the best path is
argmaxp(z1,...,27|®1,...,T7). (227)
z
This can be done using the Viterbi algorithm, which is a dynamic programming algorithm.
First we recursively define a function v by
po(z1)pa(zi|z1), t=1
Ye(2e) = § |maxyi—1pr(ze|zi-1) | pa(xalz2), t#1. (228)
Zt—1

best path to z:

After finding all the 7’s, we choose each state z; in the optimal path based on the greatest y:(z;). We start
with 27 and work backwards. We will need all T' x K possible values of v for different combinations of time
steps and state values.

zf = argmax v, (z)pr(2fy 1 |20)- (229)

Zt

Each v¢(z;) refers to a likelihood for the most probable path for getting to z;. 2z is fixed because we
are working backwards, so pr(z/, |2 is like incorporating information about the likelihood of going from
2t = Z{1q-

20.5 Solving questions in collection 2

We will now briefly discuss how to find pg, T, Q.
Note. If we had z, then solving the MLE of pgy, T,) is easy. We just get the empirical distribution over the

208 to get py. For each z, we find how often each z’ happens to find the transition matrix. We can collect
the best guesses for globals by collecting data.
The process from above tells us how to get z given the globals.

Combining these two ideals, we can apply block coordinate ascent to iteratively solve for the global and local
unknowns. This is the EM algorithm!

73

21 April 12th, 2022

Last class, we finished the cube. We learned about supervised and unsupervised learning to make predictions.
Today, we transition to decision making.

More specifically, we will cover Markov decision processes.

Example 21.1 (Map navigation). Consider finding the best route from beginning to destination. We need
to model to figure out traffic information and speed of routes. We now need to make a decision about which
route to take. We may have different objectives: the route that is shortest in expectation, expected arrival
time, etc. To formalize these decisions, we need to define a reward function.

Example 21.2 (Autonomous vehicles). There are many predictions when it comes to autonomous vehicles.
Once we have all the data (where the road is, where the lines are, if there are signs, etc.), we need to decide
how the car should drive to be safe.

Example 21.3 (Alpha Go). AlphaGo is a computer program that plays the board game Go. It was
developed by DeepMind Technologies a subsidiary of Google.

21.1 Markov decision processes

We first define a few concepts in reinforcement learning. First, we have a state. This is something we can
observe about the world. We then have a decision problem regarding choosing an appropriate action from
the state. The action will come with a reward and the learning problem is to optimize the choice of actions
given states to maximize the reward.

At the most basic level, a Markov decision process is a framework for modeling decision-making. In the
model, there is one agent and the agent needs to make decisions while interacting with the world.

One representation is given below. At time ¢, we have

action a;

TN

Agent World

~_

state sy41, reward 7y

21.1.1 Notation, definitions, goal

The agent can send actions to the world, and the world will return observations o. and rewards r.

We let S ={1,...,|S|} denote states, A = {1,...,|A|} denote actions, p(s’|s,a) denote the transition model
and 7(als) the probability of taking an action a given we are in state s. This is the policy.

Moreover, we have r the rewards, ¢ the time stamp and v € [0,1) the discount factor.

Definition 21.4 (Markov chain). In a Markov chain, we have

pt(3t+1|517 82, ...,5t,01,02, ..., at) = pt(5t+1|5ta Ubt)~ (230)

We also assume the stationary assumption:
Pt(Si11]St, ar) = pe(Si11]St, ar). (231)

We note that this is the expected reward over all time where we discount additional rewards at time ¢ by
factor v¢, which is exponential discounting.

74

21.1.2 Types of problems

The MDPs we are trying to solve are dependent on the set of variables given by MDP(S, A, r, P) where the
state and action spaces are discrete.

Note. The transition and reward functions can be more easily computed.
We consider the following problems:

e Planning: Input is MDP and output is optimal policy
e Reinforcement learning: Input is access to the world and outputs are actions. This is the same as
learning from feedback to optimize a policy.

We want to find the best policy. We use 7 to denote a policy. Policies can be stochastic or describe a
distribution over actions 7(s,a) = P(a|s) or deterministic and equal to one action 7(s) = a.

Thus we want to choose actions to maximize

m_[f_iXEworld lz Wtrt] . (232)

t=0

21.1.3 State definition

Definition 21.5 (State). A state summarizes a history such that making predictions about the future given
the state is equivalent to making those same predictions given the entire history.

This will be our interpretation. Some papers use approximations of states.

Thus we can now define our Markov decision process.

Definition 21.6 (Markov decision process). A Markov decision process is a tuple

(S, A, R(s,a,s"),T(s'|s,a),,po0) (233)
where
e S are all possible states
e A are all possible actions
e R(s,a,s’) is the reward for doing action a in starting state s and landing in state s’
e T(s'|s,a) is a matrix of transition probabilities that describe p(s'|s, a), the probability of landing in

state s; from action a starting in state s
v is the discount factor
po is some starting state

We can have different objectives:

e Infinite horizon: We want to find the policy 7 that maximizes

i vtn] : (234)

t=0

max Ep
s

e Finite horizon: This is the same as the above, but we want to have convergence in expectation

T
Zn] : (235)

t=0

max Er
™

75

21.2 Solving using value iteration

In this lecture and the following one, we will cover three methods of solving MDPs. We will first explore
value iteration. This is similar to dynamic programming because it evaluates the optimal actions based on
best values it can achieve in a future time step.

21.2.1 Finite horizon planning

We define V(*;)(s) as the total value from from state s under optimal policy with ¢ steps to go.
Note. Here, t denotes the remaining steps and does not count the current time step.

Note (Principle of optimality). The principle of optimality states that an optimal policy consists of an
optimal first action following by an optimal policy from the successive state.

This brings us to our algorithm:

1. Base case: V) (s) = max, (s, a)
2. Inductive case: We define

Vi (s) = max{rsa +Z (s']s,@) V(i (s)} (236)

s'eS

Note. We have already calculated V(*g)(s') which is similar to dynamic programming.

The computational complexity is O(T|S||A|L) where L is the maximum number of states reachable from
any states through any action.

21.2.2 Infinite time horizon

Assume a deterministic policy w(s) € A. We edfine the MDP value function

(o)
V™(s) = Egnp Z’ytr(st, (sk))|so = s| - (237)
t=0
This essentially refers to the expected discounted value from policy 7 in state s:

V7 (s) =)+ > p(s|s, w()V7 (). (238)

s'eS

We define the optimal policy to be
7 € argmax V7" (s) (239)

for all possible states. The optimal value function is defined to be
V¥(s) =V (s). (240)
We will continue to expand on solving this through the Bellman equation next week.

Note (Bellman consequences). For finite and discrete settings, the Bellman equation implies that policy
evaluation is easy! We observe that the above equation is a linear system with |S| unknowns for each V7 (s).

We can write this in vector form. If V7 is a vector of values for all states and R™ be the vector R(s,7(s)),
then

VT = BT 4 4T™V" = |V™ = (I —T") 'R"| (241)

where T™ is our transition matrix.

76

22 April 14th, 2022

Announcements

e Midterm 2 will cover unsupervised learning and our decision-making unit
e Homework 6 is out tomorrow!
e Today’s relevant textbook sections are Sutton and Barto chapter 4 and sections 6.4, 6.5

Today, we continue our unit on sequential decision-making.

22.1 Review of MDPs

Recall that MDPs are defined by
{S,A,r,p} (242)

where S is a set of possible states, A is a set of possible actions, 7(s,a) is the reward function, p(s’|s, a) is
the transition function. Our goal is to find the policy 7(s) that maximizes

thn] , (243)

t=0

E

the expected sum of discounted rewards.

Today, we continue our discussion on planning and introduce reinforcement learning. These are both MDP
problems, but are not the same problem.

22.2 Infinite horizon planning

We have an MDP value function
o0
V7(s) = Esmp Z’ytr(st,ﬂ(stmgo =s (244)
t=0

where 7 is a discount factor describing how we discount rewards going to the future. Policy 7 is better than
or equal to policy ©’ if Vs € S

V7(s) > V™ (s). (245)

We say 7* is optimal if it is better than or equal to all other policies 7.

From 7*, we can get the optimal value function: the value function associated with the optimal policy,
defined as

V*(s) = max V™ (s). (246)

T

Our goal is to find the optimal policy. To accomplish this, we will try to calculate the optimal value function.
Once we know the optimal value functions, we can extract the optimal policy from it by picking the best
action at each state. We can get the optimal step at every state using

T (s) € argmax {T(S, a) + yzp(sl‘g, a)V*(s/)}) (%)

s/

The principle we use for the calculation is the Bellman equation, or the principal of optimality:

V*(s) = max {r(s,a) + 'yZp(s’|s,a)V*(s')} : (O)

S

7

http://incompleteideas.net/book/the-book.html

Note. This is saying that the value of a state s is the sum of the value of taking the best action on s and
the value of continuing to take the optimal actions in future steps.

22.3 Value iteration
We can solve ([J) iteratively as follows:

1. Initialize V(s) =0 for all s
2. Repeat the following:

1. Set

V'(s) = max {r(s, a) +~ Zp(s’\s, a)V(s’)} (247)

s’

2. Replace V(s) with V'(s) for all s
Once we have an approximation for V*, we can extract the corresponding approximation of the optimal
policy using (*) from the above.

Theorem 22.1. Using the value iteration algorithm above, V will converge to the optimal value function

V.

22.3.1 Correctness

We will provide a sketch of why this works.

Consider a function f : R? — RP and an update step 2’ < f(z). We say x* is a fixed point <= f(2*) = x*.
We define the contraction property.

Definition 22.2 (Contraction). f is a contraction if Va # y:

1/ (@) = F)ll < llz = yll. (248)

Theorem 22.3. f contraction = 3lz* : f(z*) = x2* and 2’ + f(x) will converge to the fized point.

Proof. Let f a contraction mapping. First show that a fixed point is unique. AFTSOC not unique. Then
dx*, y*:

1 (&%) = fyO)ll = [l=* — 7|l (249)
but this violates contraction property = f has a unique fixed point.

We also want to show if we repeatedly set o’ < f(z), we will converge to z*. It follows from contraction
that

e = || >[I f(2) = faD)Il = £ (x) — =7 (250)

and thus we get closer to the fixed point if we update our z’.

The Bellman operator B is a contraction is we use norm ||V|| = max, |V (s)| so the value iteration function
has a fixed point. O

Note. The value iteration converges to V* asymptotically. Even after the optimal policy stops changing,
the value function values will continue changing.

The optimal policy can be extracted from V in a finite number of steps.

The method is similar to the finite time horizon planning problem from last week. The difference is that we
do not have a set number T of limited steps.

78

22.4 Policy iteration

In policy iteration we start with policy 7° and we repeated to the following:

1. Determine the value function V™ for the current policy.
2. Use the value function to improve the policy for all s using

7’ (s) « argmax {r(s, a) +7 Zp(s’|s, a)V”(s')} (251)

a S/
3. Update next 7 to be 7.

Policy iteration alternates between evaluating a policy and updating the policy.

Note. In value iteration, we do not keep track of policy. We extract it from the value function at the end.

Theorem 22.4. Policy iteration converges to optimal policy in a finite number of steps and will also produce
the optimal value function.

Note. We were not guaranteed the optimal value function in finite steps with value iteration.

Sketch. If the policy is already optimal, the update step will not change it. If not optimal, the update step
will provide better steps to take. Imagine that for some s there is an action o’ different from the policy
recommendation 7(s) = a # a’:

r(s,a’) +~ Zp(s'|s, a)V™(s") > V7 (s). (252)

This means that taking a’ and following 7 is better than following 7, so we should update 7w to recommend
action a’ at state s.

Thus it holds that each time the policy gets updated in policy iteration, V1 > V', O
22.4.1 Notes
Given m we can solve a system of equations to get V™, where for each s we have an equation of the form

VT (s) = r(s,m(s) +7) p(s']s,m(s)) V7 (s) (253)

since we have |S| unknowns and |S| equations. In matrix form, we have
VI =R 4+~4T"V" <= V™= (I —~T") 'R" (254)
where T is the transition matrix and I — 7™ is a matrix with full rank.
22.4.2 Comparing algorithms
Policy iteration takes fewer iterations than value iteration to solve for 7*. If L is the maximum number of

reachable states, the work for value iteration is O(|S||A|L) while policy iteration takes O(|S||A|L + |S|?) per
iteration.

22.5 Reinforcement learning

In planning, we had a full model of the environment, we knew the transitions and reward functions.

In RL, we want to learn from the environment when given no knowledge about r or p. This poses a new
challenge — we have to balance exploring vs. exploiting to do well.

There are two main approaches.

79

22.5.1 Model-based approach

We try to learn a model of the environment, which allows us to predict what the next state and reward will
be. The planning is used to decide how to act based on the estimated model.

If reward or transition structure changes, model-based learning is good at absorbing these changes into its
model. However, model-based learning is computationally expensive.

22.5.2 Model-free approach

We don’t try to learn a model and instead, we directly learn a policy or an action-value function. We refer
to the action-value function as the @-function. Model-free learning is much simpler and cheaper, but if the
environment changes, we have to do more acting and exploring to learn the changes.

22.6 Value-based methods for model-free RL: Definitions

We try to learn a Q-function. We can have Q™ for a specific policy
Q" (s,a) = r(s,a) +7Y_ p(s'|s,a)V"(s) (255)

where 7(s,a) is the value for taking action a now, and the second term is the expected value for the future
following policy .

Note. In the value function V(s), we do not input the action. The value function automatically assumes
we are following the optimal action at that step. In the Q-function, we provide both the state and action so
we can have a value for an action even if it is not optimal.

There is also the optimal Q-function:

Q*(s,a) = r(s,a) +7 D _p(s'|s,a)V*(s"). (256)
Then the optimal policy comes from picking the action with the best @)-value at each state:
7" = argmax Q" (s, a). (257)
The Bellman equation for QQ* is
Q*(s,a) = r(s,a) +7 3 p(s'|s, @) max Q" (s,) (258)
where
max Q*(s',a’) = V*(s') (259)
a/

22.7 Value-based methods for model-free RL: Algorithms

The general framework for RL algorithms is to initialize a |S| x |A] table of @Q-values Q(s,a) and repeated
choose an action based on the Q-values, and use the data we collect from the action to update the Q-table.

In each step, the data is collected in the form s,a,r,s’,a’. s is the current state, a is the action the agent
took, 7 is the reward received, s’ is the next state and a’ is the action the policy recommends.

80

Note. We do not have access to the reward function or the transition matrix, but as the agent moves in the
environment, it collects data about the reward it received.

Our agent decides how to act in an e-greedy manner. This means it follows a policy that takes the optimal
action (based on previous observations) with probability 1 — e and chooses a random action to explore with
probability e:

argmax, Q(s,a), with probability 1 —e
(s) = : o (260)
random, with probability e
We will learn @Q* through temporal difference updates.
22.7.1 SARSA
Each time we get a new experience (s, a,r,s’,a’), we make the following Q-update:
Q(s,a) < Q(s,a) + oy [r +9Q(s",d') — Q(s, a)] (261)

where «; is the learning rate that can vary based on how many steps have passed so far, r +vQ(s’,a’) is our
one-step estimate of Q™(5:%). We take the difference between the estimate and the estimate Q-value made
by our current Q-function.

Note. This is kind of like a gradient-descent update.

22.7.2 (@Q-learning

Each time we get a new experience (s,a,r,s’), we do the following update:
Q(s,a) « Q(s,a) + ay [r +ymaxQ(s',a') = Q(s,a)| . (262)

Note. The difference between the two methods is that we take the Q-value for the best next step by taking
the max over all possible a’. In SARSA, we update our Q-function as though the only option for the next
action is a'.

Note. SARSA is known as on-policy because it estimates Q™ following the current policy when it only
considers a’ in the update. It estimates the optimal @Q* while following .

Q@-learning is called off-policy because the estimate might use the next action different than what we would
take if we followed the current policy. @Q-learning converges to Q* as long as (s, a) are visited often enough.

22.8 Lecture notes
22.8.1 Value iteration

Recall we define the action-value function

Q"(s,a) =r(s,a) + 7Y p(s'ls,a)V7(s). (263)

Note. Intuitively, the @Q-function is interpreted as a one-step excursion, and following our policy again after
our single deviation.

We can compare Q™ (s,a) to V™ (s). We note V™ (s) = Q™ (s, n(s)) because V™ is the value if we follow our
policy without an excursion.

81

We can alternatively formulate value iteration as follows:

1. Start with some arbitrary Qr—o(s, a). Here k is the iteration number.
2. Until convergence, set

Qk(s,a) < r(s,a) + Zp(s'|s, a) max Qk -1 (s',a") (264)

ry

where 7(s, a) is the immediate reward for the present, « is the discount factor,), p(s'|s, a) is the expectation
over future, and Qx—1(s’,a’) is the guess of the value of doing a’ in s so far and max,: tells us to take the
best of our choices.

Note. This does not assume we take our particular action.

Note. Qi (s,a) will converge to Q*(s, a) with the optimal policy and we can read off 7*(s) = argmax, Q*(s, a).
Also m may converge before Q.
22.8.2 Policy iteration

Recall we want to find the best policy . We rely on the following theorem.

Theorem 22.5 (Policy improvement). If we set
m(s) + argmax Q™ (s, a), (265)
we get an improved policy or no worse.
This implies the following algorithm:
1. Start with some policy 7.

2. Evaluate or compute Q7 (s, a) and improve 7 using the policy improvement theorem.
3. Repeat step 2 until convergence.

Note. In nice settings, we will converge on some optimal policy. These optima are not unique.

82

23 April 19th, 2022

Announcements
e Midterm 2 is in about one week!

Today, we discuss reinforcement learning.

23.1 Reinforcement learning

We consider situations where we do not have the transition function or the rewards. How do we find the
optimal policy?

When we don’t have T, R we have a trade-off between exploring (learning more about T, R) or exploiting
(optimize with respect to T, R). We have the same goal of maximizing B [>~, v'r].

There are three types of algorithms:

e Build model to learn T, R and plan.
e Value-based methods, that turn into some form of value iteration
e Policy-based, optimizing 7(s) directly

23.2 Model-based learning

We want to learn a model for 7', R and then optimize with respect to T, R to find 7*. We then collect some
data and update T, R.

Note. Recall that we want to collect data and balance between exploration and exploitation. We used
e-greedy action selection!

There are two ways to sample and get the right data to build our model.

23.2.1 Optimism under uncertainty

Let N(s,a) be the number of times we visit the state-action pair (s,a). Each visit is a time that the agent
is in state s and chooses to perform action a. When we learn, we assume that if N(s,a) is small ,then the
next state has high reward. When we do this, we are being optimistic about the state-action pairs we are
uncertain about. Then we plan using the optimistic model.

Note. Because the model thinks taking visiting lesser-known state-action pairs lead to high reward, we have
a tendency to explore lesser-known areas.

23.2.2 Posterior sampling (Thompson sampling)

We maintain a posterior (Dirichlet) on the transition function p(:|s,a). We sample from the posterior to
get a model that we proceed to plan with. The idea is that when we are less certain about the outcome of
the transition function, there is greater likelihood of the sampling leading us to explore. When we are more
certain about the best outcome, we are more likely to stick with the best outcome.

We maintain a distribution over models. We sample T, R ~ p(T, R|D). We then find 7* with respect to T, R
and we repeat by updating p(T, R|D). We start by assuming everything is highly uncertain. As we gather
data, the posterior will contract.

Note. Model-based approaches tend to be computationally expensive.

83

23.3 Model-free value-based approaches

We are no longer learning a model and planning. Instead, feedback from the world is directly used to update
the agent.
Recall from last lecture about @)-functions

Q" (s,a) = R(s,a) + 72p(s’|s,a) x V(s (266)
W—/ o W—/

reward after action a valueofnext

expectation over where next

In a discrete setting, we can consider the following value-based method.
1. We can initialize Q(s,a) in a S x A table.
2. We then take an action.

Note (e-greedy). One strategy to take the action is e-greedy. It is given as follows:

(s) = {a, with probability € (267)

random, with probability 1 — ¢

3. We then update @ given (s,a,r,s’,a’). We give two approaches below, SARSA, and Q-learning.

23.3.1 SARSA

This is on-policy. It learns (Q-values corresponding to the agent’s behavior, so what the agent learns depends
on how the agent is behaving.
We update @ by

temporal difference

Q(s,a) « Q(s,a) + ay(s,a) [r +vQ(s',a") —Q(s,a)] (268)

one-step estimate

and ay is our learning rate.

Note. If we always to Texplore(s) and run SARSA, Q(s,a) converges to Q®*Plore,

The intuition of SARSA is the interweaving of policy evaluation of current policy and policy optimization
which is acting greedily. We will converge to n*, Q* at the end.

This is because we are evaluating our policy, but because we are changing what we are doing, this still
converges to the optimal.

23.3.2 (Q-learning
This is an off-policy approach. We learn Q)-values Q* corresponding the the Bellman equation

Q(s;a) = Q(s,a) + ai(s, a)[r + ymax Q(s', ') — Q(s, a)] (269)
Note. Our learning rate oy is typically decayed. We want Y a; — oo and Y a? — C.

In Q-learning, we are always taking an action o’ that may not necessarily be 7(s). This is empirically faster
than SARSA.

Note. Under certain conditions, @-learn converges to Q*. This comes from the Bellman equation and
contraction property-esque ideas similar to last time.

84

Theorem 23.1 (Q-learning convergence). Vs, a if >, ax(s,a) = 00, Y, a*(s,a) < oo then Q-learn converges
to Q* ast — 0.

Note. For SARSA convergence to @*, we need the following condition, that behavior is greedy in the limit.
To satisfy this condition, we set €;(s) = m so € decreases as we visit each state-action pair more often.

23.4 Deep @-networks

By combining Q-learning with neural networks, researchers have achieved amazing results like playing video
games.

Because there are so many states in a game, a table does not work. Instead, we can parameterize Q(s, a; w)
and use a differentiable deep network with parameters w. The network will take in a state and generate
predictions for @Q-values of taking each action from the state. We will use gradient descent updates to find
a model that minimizes the squared error.

85

24 April 21st, 2022

Announcements

Midterm Tuesday!

There will be office hours on Sunday
Homework 6 is due Friday

Practical is due the following Friday

Recall from last time, we discussed reinforcement learning and some value-based approaches like SARSA
and @-learning.

86

	January 25th, 2022
	Logistics
	Introduction
	Taxonomy
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	January 27th, 2022
	Regression
	Supervised learning

	Non-parametric methods
	k-nearest neighbors (k-NN)
	Kernelized regression

	Parametric methods: linear regression
	Bias trick
	Least squares loss
	Basis regression

	February 1st, 2022
	Probabilistic regression
	The probabilistic view
	Matrix form
	Optimal variance
	The geometric perspective

	February 3rd, 2022
	Classification
	Parametric models for classification
	Objective function
	Hinge loss
	Stochastic gradient descent

	Evaluating classification

	February 8th, 2022
	Probabilistic classification
	Discriminative approach
	Generative approach
	Class prior
	Class conditional with continuous x
	Class-conditional with discrete x

	Multi-class classification

	February 10th, 2022
	Model selection
	Examples of challenges in model selection

	Checking for generalizability
	Using train, validation, and test split
	Cross validation

	Bias-variance tradeoff
	Managing the bias-variance tradeoff

	February 15th, 2022
	Bayesian models
	Posterior over parameters
	Predictive posterior
	Prior selection

	February 17th, 2022
	Deep learning today
	Deep learning models
	Expressiveness
	Ease of computation

	Additional architecture
	More architectures
	Convolutional neural networks
	Recurrent neural networks

	February 22nd, 2022
	Optimizing a neural network
	Loss function for regression
	Loss function for classification

	Vector chain rule
	Scalar values
	bold0mu mumu xxsubsubsectionxxxx a size D vector
	bold0mu mumu xxsubsubsectionxxxx, bold0mu mumu vvsubsubsectionvvvv size D, J vectors
	bold0mu mumu xxsubsubsectionxxxx, bold0mu mumu vvsubsubsectionvvvv, bold0mu mumu uusubsubsectionuuuu size D, J, J' vectors

	Finishing optimization
	Generalization

	February 24th, 2022
	Introduction and motivation
	Max margin
	Hard margin SVM
	Geometric intuition
	Overparameterization and simplify objective

	Soft margin SVM

	March 1st, 2022
	March 3rd, 2022
	Causal chains
	Moral responsibility

	March 8th, 2022
	SVMs continued
	Reframing the problem
	Strong duality

	Kernel trick
	Valid kernels

	March 10th, 2022
	Unsupervised learning
	k-means
	The objective
	Lloyd's algorithm

	Hierarchical agglomerative clustering (HAC)

	March 22nd, 2022
	Mixture models
	Connection to generative classification

	Max max
	Expectation maximization
	The EM algorithm
	General properties

	March 24th, 2022
	Embeddings and principal component analysis
	Making this linear
	Minimizing the reconstruction error
	Adding constraints
	Simplifying the problem

	Solving to minimize reconstruction error
	Alternative view: Preserving variance

	March 29th, 2022
	Probabilistic embeddings
	Variations of probabilistic embeddings
	Factor analysis
	Variational autoencoder

	Topic models
	The mathematics
	Procedure to create bold0mu mumu xxsubsubsectionxxxxn

	Dirichlet distributions
	Relationship with discrete mixtures
	Mixture models
	Topic models
	Factor analysis
	Comparisons

	Inference
	Generative model
	A new equivalent generative model
	Motivation
	Alternative derivation from lecture

	March 31st, 2022
	Graphical models
	Notation and rules

	Bayesian networks
	d-separation

	Uniqueness and parameters
	Uniqueness
	Parameter counting

	Beyond Bayes networks
	Undirected models
	Factor graphs

	April 5th, 2022
	Bayesian networks review
	Inference
	Setup
	Specific example: Rain and sprinkler
	 Choosing the order of elimination

	Minimum cost of inference
	Optimal order for polytrees

	Preview: Hidden Markov models
	Final notes

	April 7th, 2022
	Review
	Time series and hidden Markov models
	Global parameters

	Questions we want to answer
	Collection 1: Given globals, solve for locals

	Collection 2: Given bold0mu mumu xxsubsectionxxxx's, solve for globals
	Forward-backward algorithm: Solving questions in collection 1
	Intuition
	The forward pass and t.
	The backward pass and t.
	Solving questions in collection 1
	Viterbi algorithm for best path problem

	Solving questions in collection 2

	April 12th, 2022
	Markov decision processes
	Notation, definitions, goal
	Types of problems
	State definition

	Solving using value iteration
	Finite horizon planning
	Infinite time horizon

	April 14th, 2022
	Review of MDPs
	Infinite horizon planning
	Value iteration
	Correctness

	Policy iteration
	Notes
	Comparing algorithms

	Reinforcement learning
	Model-based approach
	Model-free approach

	Value-based methods for model-free RL: Definitions
	Value-based methods for model-free RL: Algorithms
	SARSA
	Q-learning

	Lecture notes
	Value iteration
	Policy iteration

	April 19th, 2022
	Reinforcement learning
	Model-based learning
	Optimism under uncertainty
	Posterior sampling (Thompson sampling)

	Model-free value-based approaches
	SARSA
	Q-learning

	Deep Q-networks

	April 21st, 2022

