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Abstract

These are notes' for MIT’s 8.370, a graduate class on quantum computation, as taught by Professor
Peter Shor in Fall 2021. We will cover most of the textbook Quantum Computation and Quantum
Information by Nielsen and Chuang.

Course description: Provides an introduction to the theory and practice of quantum computation.
Topics covered: physics of information processing; quantum algorithms including the factoring algorithm
and Grover’s search algorithm; quantum error correction; quantum communication and cryptography.
Knowledge of quantum mechanics helpful but not required.
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1 September 8th, 2021

1.1 Class organization

Grading is 50% HW, 20% Midterm (on some Wednesday in the middle of the term), and 30% Final. > 90%
isan A, > 80% is a B, although these cutoffs can be lowered.

Weekly homeworks will be due Fridays at 8pm on Gradescope, and will be posted on either Friday or Saturday
on Canvas. Homeworks may be submitted up to 24 hours late with a 10% penalty, after that solutions will
be posted and we will need a note from S* (or Harvard equivalent). Collaboration is strongly encouraged,
and a Piazza will be set up.

Lectures will be automatically recorded and posted to Panopto. The textbook is Nielsen and Chuang, and
John Preskill’s (Caltech) lecture notes will be helpful. Prof. Shor will post reading sections on Canvas ahead
of lectures.

1.2 History of quantum information (Nielsen 1.1)

Quantum Mechanics was developed in 1925 by Bohr, Heisenberg, Schrodinger, Born. In 1935, the EPR
triplet found the EPR paradox, where two entangled particles appear to have transmitted both position and
momentum information faster than light. In the 1960s, Bell proposed that QM is either 1. non-relativistic
or 2. non-local by using discretized EPR.

There are various “interpretations" of QM, and we will use the Copenhagen interpretation: Merman interprets
this as “shut up and calculate".

What can we do with this weirdness? In 1967, Wiesman wrote a paper about uncounterfeitable quantum
money, and in 1983, Bennett used the idea in quantum key distribution, where two people can use a quantum
channel to agree on a secret key without a prior secret key.

In 1981, Feynman noticed that it seemed exponentially hard to simulate quantum systems on classical
computers, and suggested using a quantum computer. In 1985, Deutsch asked if a quantum computer can
solve problems faster than classical computers. Simon proposed a problem which quantum computers can
solve faster, and Shor came up with Shor’s factoring algorithm.

Chuang will cover quantum communication channels in 8.371 in the spring.



2 September 10th, 2021

2.1 Single qubits

Theorem 2.1 (Superposition principle). If |A) and |B) are two distinguishable states of a quantum system,
then a|A) + B|B) is also a state if |a|?> + |B]? = 1.

Mathematically, this means that a quantum system is a complex vector space where |A) and |B) are unit
column vectors. Moreover, distinguishable states are orthogonal vectors. So, inputting «|A) + §|B) into
an experiment that distinguishes the states |A) and |B) will output |A) with probability |a|? and |B) with
probability |3|2.

Additionally, applying a unit (complex) phase to a state |¢) gives the same state |g), that is, there is no way
to distinguish between |¢) and e%’|q). (However, a rotation of 360° induces a phase change of -1 and it may
interfere with itself).

Definition 2.2 (Inner product). We use the inner product (v|w) = vfw.

Thus, if |a]? + |B]? = 1, we have |v) = [g} vl =Tla .

Example 2.3 (Polarizing filter). Let a horizontal polarizing filter be one that allows <+ horizontal photons
to go through, so J vertical photons do not.

Then, no light goes through if we use both a horizontal and vertical polarizing filter.

Definition 2.4 (Qubit). A qubit is a 2D quantum vector space with only two distinguishable states.
Everything else is a linear combination of those states.

Example 2.5. | ]) is vertical, | +») is horizontal. Then, we also have diagonal photon states | /') = %ﬂ “
)+ 1) and [ = (1 <) = D).
2

When we put a diagonal photon through a vertical polarizer, we get | ) with probability ( %) = %, and
L)Z 1

| <) also with probability ( 7 =

5
Recall that quantum mechanics occurs in a complex vector space. As a result, we define
Definition 2.6 (Right and left circularly polarizations).
1
V2

Definition 2.7. Principle: QM is linear 27

(I ) +il 1) = 12), %(I ) =il 1) =10) (1)

Theorem 2.8. An isolated quantum state evolves according to a unitary matrixz. Additionally, an isolated
quantum state evolves linearly.

time evolution

|¢)) ———— M) (2)

We want evolution to preserve lengths. That is, we want M to preserve lengths: unit vectors are taken to
unit vectors. Thus,

(WIMTM|y) =1 3)
So,
(WIMTM) =1V unit [¢p) = MM =1 (4)

Recall (1| = 1.



Note. M rotates vectors in complex space.

Definition 2.9 (Polarization states). FEach of these states is one instance of a qubit:

[<)=10), (D=, =M  [N)=[-), ()
1 1

\/§(| )il DEI+4),  [0)=—Z(«)—idD)(=]-1d) (6)

Q) = 7%

2.2 The Bloch sphere

Example 2.10 (Stern-Gerlach experiment). The setup for the Stern-Gerlach experiment begins with a spin
% particle, with two basis states: | 1) and | |). The apparatus contains a varying magnetic field such that it
separates | 1)s up from | |)s down.

We also define mixed states
1

V2

1
V2

1

V2

1

V2

| =) D+, 1<) D=1 b A +id),  1x) (1) =il )

(7)

Definition 2.11 (Bloch sphere). We define the Bloch Sphere as “the geometrical representation of the pure
state space of a two-level quantum mechanical system."

Bloch Sphere

Definition 2.12 (Unitary rotation matrices). A matrix is unitary if UTU = UUT = I. Equivalently, both
the columns and rows are unit vectors. We define the following useful rotation matrices:

0 1 0 —i 1 0
Note. A silly mnemonic for remembering o,: the —i is lighter and floats up.

On the Bloch sphere, o, rotates vectors 180° about the x axis:

ol =11, ol =1[1), oul=2)=[2) oule)=—])=]) (9)

because | <), —| <) differ by a unit phase. Note that o, and o, act analogously.



3 September 13th, 2021

Announcements

e OH W2:30-4
e Problem set posted on Friday
e Guest lecturers next week: Ike Chuang and Aram Harrow

Recall: A quantum state is a unit vector in C*, and isolated quantum systems are evolved by unitary
matrices. A matrix U is unitary if and only if UUT = U'U = I. Fact: unitary states are diagonalizable,
with U = V*DV, with V is unitary and D a diagonal matrix with unit complex numbers along the diagonal
(€' for real 6).

3.1 Measurement

Definition 3.1 (Quantum measurement). A complete von Neumann measurement is determined by an
orthonormal basis of C*.

For example, |0) and |1) could be a qubit. If a quantum state is «|0) + 3|1), then we see |0) with probability
|a|? and |1) with probability |3|?. But we can also take the basis

_10)+11) =1
+) = 7 -) = 7 (10)
Example 3.2. Measure state |¢)) = .8|0) + .6|1) in the {|+),|—)} basis.
2|1 |
P(+) = (+¥)]° = ﬁ(<0| + (1))(:8[0) +.6[1))| = 7| = 98 (11)
P(|=)) = (=) = .02 (12)

Intuitively, the probability is a projection of the desired state onto the basis.

We had a basis [0)(0], |1)(1] (1-dimensional projection). So,

ool=y of - mar=fg Y (13)

Thus, |0)(0] 4+ |1)(1]| = I. Suppose we have a basis of four states {|0), [1),|2),|3)}

We claim there is a measurement that answers the question: in the state either {|0), |1)} or {|2),[3)}? In
the Copenhagen interpretation, measurement “collapses" into the measured state.

Definition 3.3 (Von Neumann measurement). A von Neumann measurement corresponds to a complete
set of projection matrices. A projection matrix has eigenvalues 0 and 1, where complete means

k
ILIT; = 0,0 # 4, I =1 (14)
i=1

I1; always looks like |v1)(v1]| + - - - + |ve) (v¢| where the v;’s are some set of orthonormal |v;).

Example 3.4.

ITa = [0)(O] + [1)(1] = (15)



Here, II;11, = 0,11; 4+ IIs = I, so it is complete.

For example: |¢) = .5/0) + .7|1) + .5/2) 4+ .1|3). When we measure it, we get IIy|¢)) with probability
|H1|’(/J>|2 = (|11 |¢) and IIa]y) with probability |H2|’(/J>|2 = (¢|II2]|¢)). Remember to normalize the original
vectors.

We have
Iy |4y = .5]0) +.7|1) (16)

so we get II1|¢) with probability .25 + .49 = .74. We normalize as %. Similarly, we have

Ma¢) = .5[2) +.1]3) (17)

with probability .26.

3.2 Circuit Model of Quantum Computation

We start with the state |[¢)) = |vi)|v2) ... |v,) where each qubit |v;) is a 2D quantum state, so the overall n
qubits are a 2" dimensional quantum state. Now, we apply quantum gates (unitary matrices) to small sets
of qubits to make qubit measurements. Due to interference, we measure everything at the end.

Example 3.5 (Interference). Interference happens in quantum computation. Consider the unitary matrix
1 -1 1 1 0
i . 1 . .
M = % [1 1 ] Apply it to |0) = [0] to get 7 [1] = |+). Apply it twice to get [1] =|1).

M [(1)} = %HO) +[1)): measure it, and get |0) with probability + and |1) with probability + in the {|0), |1)}

basis. Then, M? {(1)] = {ﬂ, since M? = {(1) _01} = —i0y.

Example 3.6 (Interferometer). If light is split into two paths and recombined, and we want to measure
which path it was taken. Each of the detectors at the end see 50% of the photons. Note that M tells us
what happens along a beam splitter, as a superposition of each of the two paths

10



4 September 15th, 2021

4.1 Eitzur-Vaidman bomb test

Consider an interferometer that splits incoming light into |h) and |v) with 50% probability each. Thus, the
matrix for this beamsplitter is

1 /1 -1 .
M = \ﬁ L 1 } single photons (18)

Note that this is the asymmetric version, although the symmetric version is equivalent (under unit phases).

Example 4.1. Start with |h). Then,

1 1 1
ﬁ(\h>+|v>) = Mﬁ(\h>+|v>) = 5([h) + o) = k) + [v)) = [v) (19)

This means that after splitting and recombining in the interferomter experiment, an incoming horizontal
photon always becomes a vertical photon and triggers the vertical photodetector.

M|h) =

Example 4.2 (Eitzur-Vaidman bomb test). Factory produces bombs, where bomb will explode if a photon
hits the detector. But some bombs are defective (photodetector is broken)! How can we find the non-defective
bombs without exploding it?

Classically, no way to find out. How do we do this quantum mechanically?

Proof. We put the bomb in the middle of an interferometry experiment.

Suppose the bomb is defective. Then, the photon will travel along both paths and (per above) the vertical
detector will detect.

Suppose the bomb is now not defective. Then, the bomb will measure the photon, and with probability %
it will be in |v) and go off. With probability 1 it will not go off, so it will be in |h) and get to the beam
splitter vertically. Applying M |v) = —|h) + |v) (unnormalized), so we’ll see it in the vertical detector 50% of
the time and the horizontal detector 50% of the time. Thus, if not defective, the horizontal detector detects
L of the time
70 .

Comparing, we see that horizontal detector detecting means bomb not defective, and it did not explode! [

Note. There is a way of doing this where the probability the bomb explodes is 1 in 10 million, or arbitrarily
small (give more complex experiments), without decreasing the probability that you detect it to be not
defective and not exploding. So! Not a trade-off.

4.2 Measurement

Definition 4.3 (Observable and Hermitian). An observable on a quantum state space is a Hermitian
matrix. A Hermitian matrix is the analog of a symmetric matrix. That is, M is Hermitian if M = MT. A
Hermitian matrix has real eigenvalues and is diagonalizable: M = VDV, where D is diagonal and real.

So if M is observable, then we can write
M =" Aifvi)(vil (20)
where |v;) are the eigenvectors and A; are real.

So how does an observable correspond to a von Neumann measurement? An observable measures some
physical quantity, like spin. An observable corresponds to subspaces for each eigenvalues, so

IT), — projection onto subspace of eigenvectors with eigenvalue \;

the corresponding measured eigenvalue.

11



Example 4.4 (Spin ; matrices). An observable with spin in the z direction is [ o,. So, we

I
=
—_
Il
N

0 2
the z direction).

1 . . . . . .
measure [ ] with eigenvalue 3, | 1), and we measure [ﬂ with eigenvalue —21,| |) (eigenvalues measured in

Then, the observable for spin along the z direction is

R DR i N

Theorem 4.5. Given an observable M and a quantum state |), the expected value of the observable is

(Y[ M[)).

—

3 1
Example 4.6. Suppose [¢)) = || = 2|0) + £|1), and M = E é] =3 [%
2

O[]

1 _1
:| + 1 |: 2; 12:|. The ﬁrst
2

l\3

5
matrix projects onto |+) and the second onto |—).
Then,

WMy = [2 4] E ﬂ { T

Note that if we measure |¢) in the |+),|—) basis, we have
37\? 49
p 1 1 1 1
(+) = ({\/E ﬁ] [g]) = 50 P(-) = ({\@ *ﬁ} [

— 74
257

Vs ow

So the expectation value is 349 + 155 1 as expected.
Proof. We have

E [outcome] = Z ;i Proutcome = Z i (i) |2 (24)

Note. Note if I, is more than rank one, then we can write the matrix out as a sum of projections onto
eigenvectors:

1 1 2 2
1y, = o) @] + ) (02| (25)
Recall that II,, is the subspace of eigenvectors with eigenvalue ;.

We continue writing

ZMW ZA blog) (vil1h) = zzz(ZAm v1>|w> (| M) (26)

12



5 September 17th, 2021

Announcements

e Guest lecturers Aram Harrow and Ike Chuang next Monday and Wednesday

5.1 Classical circuits

Classical circuits map binary inputs to binary outputs with Boolean functions. They can also be represented
as truth tables, such as the exclusive-or and the and.

We consider the circuit for the half-adder: it has two FANOUT gates (x — x,x), a SWAP gate (z,y — y, x),
an XOR and an AND gate, each with an output.

Half Adder

A CARRY
’% AND A.B

e

Theorem 5.1. Any binary function can be computed using 2-bit gates of (AND, NOT).
N.B. also 1-bit gate: NOT.

Proof. Suppose we have f(x1,x2,...,2,). We proceed by induction. Assume we have

fozf((),l?z,l'g,...l'n), f1:f<1’x27x27"'xn) (27)

Then, we can compute

f=(xoAf1)V (mz1 A fo) (28)

How many gates are in this construction? We have 2 AND and 1 OR gate, so
gates(n) = 3+ 2 - gates(n — 1) = gates(n) ~ O(2") (29)

Is this necessary? We can count the number of Boolean functions: 22" (two outputs for each of 2" possible
inputs of length n), and the number of circuits with & gates has an upper bound of 2¥ (%),

Thus, you really do need k ~ 2™ gates to make a Boolean function.
5.1.1 Quantum circuit diagram

A qubit is represented by a wire in a quantum circuit diagram.

Claim. In an isolated system, QM is reversible due to measurements.

How about reversible classical computation? What 2-bit gates are reversible?

13



Example 5.2. NOT is reversible. AND is not reversible. Note that for it to be reversible, there must be
the same number of input and output gates.

z,y — x Ay, x Vy is also not reversible, due to repeat.

i
CNOT: 2,y — 4 0¥ 12 =0
z,~yifz=1

x is the control bit, y is the target bit.

5.2 Universal reversible computation
Can you do universal reversible computation with 2-bit reversible gates? No.
Theorem 5.3. Any output made from CNOT, NOT is of the form:

1 DPxasD... Tk

X1 Dx2 D ... Tk

Proof. By induction. Base case: Check 2-bit reversible gates (NOT, SWAP, CNOT). Assume induction
hypothesis. Then, repeated elements in the XOR work out. O

Can you do universal reversible computation with 3-bit reversible gates? Yes.

Definition 5.4 (Toffoli gate). The Toffoli gate is a CCNOT, where the first two bits are both control bits,
and the last bit is the target bit.

Toff(z,y,2) = x,y,2 B (x A y) (30)
000 | 000
001 | 001
010 | 010
011 | 011
100 | 100
101 | 101
110 | 111
111 | 110

Note the last two rows have the target bit flipped.

Why do Toffoli gates let us perform universal reversible computation?
Toff(x,y,0) = (z,y,x A y), Toff(z,1,1) = (z, L,z ® 1) = (z,1, ) (31)

Can do any computation (input,0?,1%) — (input, output, intermediate results). By keeping input, all com-
putations are reversible.

14



6 September 20th, 2021

Announcements

e Today is a guest lecture given by Aram Harrow.

6.1 Multiple quantum systems

We begin with the case of two qubits. They can be in a superposition of |00}, |01}, |10}, |11). Thus,
1Y) = o0|00) + co1|01) + c10]10) + c11[11) = || e C* (32)

When we generalize to n qubits, then there are 2™ states, which is a superposition of all such states. Thus,
) € C?". This is a central attraction of quantum computing, as there is exponential growth.

|"/}> = Z Cm‘m% ‘CL’> = |.T17:L‘2,. . .,l‘n> (33)

z€[0,1]™

More generally, we consider if system 1 has state space V = C% and system 2 has state space W = C%.
Then, the combined system has state space C#? in the superpositions.

Definition 6.1 (Tensor products). We define tensor products of two state spaces as

V @ W = span{|v) ® |w), |v) € V,|w) € W} (34)
For example, |01) = |0) ® |1).
1.
v1w1
vl wl DY
U2 w2 V1Wq
=71 =] e = | (39)
Udl U)d2
vdlwd2

The tensor products of the basis vectors for the subspaces become the basis vectors for the larger space.
2. Moreover, the tensor product |v),|w) — |v) @ |w) is bilinear, that is, it is linear in both arguments
[v) @ (e1]wr) + ealwz)) = e1]v) ® |wi) + c2|v) @ w2) (36)
and similarly in the other argument.

Note (Probability). We have seen @ before in probability theory, when combining two probabilities:

Poqo
Po q0 Pod1
= ; = , ®q= 37
P {PJ 1 L]J b P14o (87)
Pp1q1

(all ways of combining them)

For quantum states, the joint system of |a), |3) is |a) ® |3).

15



Note (Outer products). Not only is it similar to inner products, but it is also similar to outer products.

I B o R A A R R A (39)

Note that outer products do not generalize well beyond 2 systems, but it allows us to analyze systems as
matrices.

Note (Independence). In probability, » = p ® ¢ for some p, ¢, then they are independent random variables.
If r # p ® q for any p, g, then random variables are non-independent. Can think about this in terms of free
parameters.

In the quantum analogy, 1)) = |11) ® |12) is a product state, and [1)) # |1)1) ® [1)2) means |1)) is entangled.

For n qubits, [¢) = |[¢1) ® [h2) @ - -+ @ [¢hy) is a n-fold product state. This product state can be describe in
2n parameters, while an entangled state has 2™ parameters.

Claim. Let the state be

_ |00) + [11)  0) @ |0) + |1) ®|1) 1

V2 V2 V2

) (39)

= o O =

We claim [¢) # |a) ® |5). Note this is true, which we can observe by writing in matrix form and seeing
no outer product exists (rank 2 matrix vs. rank 1 outer product). So, this is entangled: this is called a
Bell/EPR pair.
6.2 Unitary transformations
U acting on system 1, and V' acting on system 2. We want these to be independent systems, so

la) ® [8) = Ula) @ VI|B) (40)

At the same time, QM should be linear, so their joint action should be U ® V.
In this notation, acting only on system 1 is U ® I, and analogously for system 2 is I ® V. Also,

UehHIeV)=IV)(UI)=UV (41)

To perform tensor product multiplication, we have

[(A® B)(C® D) = AC@ BD.| (42)

Next time: measuring tensor product states.
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7 September 22nd, 2021

Today the guest lecture is given by Ike Chuang.

7.1 Entangled states

Definition 7.1 (Entanglement). A state [¢4p) of a bipartite system is entangled iff
Bla), [¥B) : [ag) = [¢a) ® [¥B) (43)
Example 7.2. Consider the following examples of (not) entanglement:
. + +
1. Bell states or EPR pairs: |®1) = %, [Py) = % Entangled.
2. |00) + |11) + |22) not entangled.
3.

(]00) 4+ ]11))®2 = |00 00) 4 [00 11) 4+ |11 00) + |11 11) labelling first tensor, second tensor (44)
=00 00) + |01 01) + |10 10) + |11 11) grouping first qubit, second qubit  (45)

—100)+[11)+[22)+33) (46)
3

=3 Jaa) (47)
=0

Not entangled.

4. Generalizing the above,

-1
(100) +[11)®" = Y~ |az) (48)
=0
Not entangled.
|00) +]01) + |10) + |11) = (|0) + |1))(]0) + |1)) not entangled.
|00) + |01) + |10) is entangled.
1/0.99999|00) + +/0.000001|11) is entangled, but not very much.

GHZ state: |000) + |111). Every single bipartition of this three-qubit state is entangled, so this state
is entangled.

® X o o

Claim. Almost all quantum states are entangled!

7.2 Quantum circuits

Recall single qubit gates.
Example 7.3 (Single qubit gates). The Pauli matrices are below:

0 1 0 —i 1 0
Al T ®
We can see each gate as a wire with a box in it, although the identity matrix is just a wire.
171 1 10
-l A=l o
Note that
X|0) = 1), HI0)=10)+[1),  H[1)=]0)—[1) (51)
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Example 7.4 (Two qubit gates). Recall for two-qubit gates, we can write them as 4-vectors |00) =

oo o

1 1 .
[0} & {O] Consider

vlo0y = LI ) (52)

We did not specify the middle, so we let it be another Hadamard (nested Hadamards!)

10 0 1
U= % 8 } —11 8 (53)
10 0 -1
Here, the columns are the states |00),]01),|10),|11).
First matrix is the MSB (most significant bit) and the second matrix is the LSB:
0 010
xer=1 glels =110 0 o 2
01 00
We put the LSB in the spots of the MSB.
Example 7.5 (Hadamard).
H®I:\}§H _II] (55)
Example 7.6 (CNOT).
1 0 0 O
ovot= | o o) (56)
0 010
So it acts as
CNOTJa by = |a (a & b)) (57)

7.3 Entangling circuits

For a two qubit system, we can draw a circuit by writing the MSB on top and the LSB on the bottom, and
we point the states into the circuit.

U=H&®CNOT (58)

%) | |41) | |¢2)

00 | (0+1)0 — 00 + 10 | 00+11 — @
01 | (0+1)1 =01+ 11 |01 + 10 = U,
10 | (0-1)0=00-10 | 00-11 = &_
11 | (0-1)1=01-11| 01-10=T_

18



Thus, we can write

10 1 O
=101 0 Al=|x ] )
10 -1 O
Multiple qubits
(]00) + |11))]00) = |00 00) + |11 00) == |0000) + |1111) (60)

This is useful for interferometry!

7.4 Entanglement and precision measurement

. 1 . . . . .
Given = [0 e%] , we wish to determine ¢ using as few times as possible.

Inteferometry

0) = [E] — lr) ~[] = o) ~[H] ~ ) ~[Measurement] (61)

We can calculate ¢ with Ap = ﬁ uses. [details] We can use n uses of to measure this to Ap = %
precision with entanglement, with 1 Hadamard and several CNOTs.
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8 September 24th, 2021

Announcements

e Wednesday lecture had no audio, sad. Find lecture notes on Canvas!

8.1 Tensor product of measurements

Recall a von Neumann measurement corresponds to a set of Hermitian projectors IIy, - - - II; with
(]

Sm=1, w1, =1L (62)

We call II; a measurement outcome.

Theorem 8.1. For projectors Il o,11g on Hilbert spaces A, B, Il 4 ® IIg is a projector onto A ® B.

Proof. (ITy ®11p)° =113 @ 1% = [I4 ® I15. O
Theorem 8.2. IfIIy,--- I}, and I1},--- 7H§€B are measurements, then {II; ®H9}1§i§k,4,1§j§k5 18 @ mea-
surement.

Proof. We need to show that the sum of these is the identity on the tensor product space A ® B. We have

kp ka ka ks

ZZHi@)H;_(ZHi)@ YU | =1a®Ip = Lags. (63)

j=1 i=1 i=1 j=1

O

Example 8.3. Suppose we have state |¢) = 5=|00)ap + 5[01)an + %|10>AB and we measure the second
qubit in the {|0),|1)} basis.
Then

P(10)5) =5 (OY)ap = =10)4 + —=|1)a with probability (64)

B) =B aB = 510)a /2 4 with pr 11y4

We can normalize the resulting state. This is a von Neumann measurement with projectors [4®|0) (0|5, [4a®
VB (1]

8.2 EPR Paradox

Consider rewriting the Bell state % (|01) — [10)) in the {|+),|—)} basis:

1 1 1
E(IOD —[10)) = ﬁ((lﬂ H=D0H) = 1=2) = () = =D+ + =) = 7

More generally, we can show that measuring the qubits in Bell state in any basis produces orthogonal states.

(I=+)—1+-)) (65)

If Alice and Bob prepare this Bell state, if Alice and Bob measure simultaneously, Bob’s qubit must “know"
what result it will give to be compatible with Alice’s measurement. There is no way to have QM where
Bob’s measurement of entangled state is not affected by the basis of Alice’s measurement.

If there is no non-local correlation, information cannot be transmitted faster than light.

Bell showed no way to have a locally realistic theory.
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9 September 27th, 2021

Announcements

e Shor going to Spain, notes to be prepared soon!

9.1 Joint observables

Recall that an observable is

M = Z M1, A; an eigenvalue (66)

and a measurement is a projection onto one of the eigenspaces.

Suppose two observables My, M), giving values of A on space A and p on space B. The observable for Ay (A
and p) is M\ ® M, and the observable for A\ + pis M\ @ I +1® M,.

9.2 Gates

9.2.1 Classical analog

We recall that AND, OR, and NOT gates are universal, meaning we can construct any Boolean function
from A, V, - gates. Note that these are all 2-bit gates.

Theorem 9.1 (Extended Church-Turing thesis). Any efficiently computable function can be expressed with
a relatively small number of 2-bit gates. More precisely, the number of gates is polynomial in the input.

9.2.2 Quantum gates and circuits

Examples of quantum gates are CNOT and the Pauli matrices.

Definition 9.2 (Quantum gate). A quantum gate is a 2™ X 2™ unitary matrix where n is the number of
qubits.

Example 9.3 (CNOT). The CNOT gate is given by
1
CNOT = (67)

We can build quantum circuits out of 1 and 2-qubit gates. We represent qubits as wires, and gates as lines
connecting wires.

Note. Any Boolean function can be constructed out of AND, OR, NOT gates, and Toffoli gates can produce
any reversible Boolean function.

Theorem 9.4. There is no finite set of quantum gates that will produce any unitary transformation.

However, we can approzimate any unitary transformation arbitrarily well with a finite gate set (Solovay-
Kitaev theorem,).

We show a simpler theorem.

Theorem 9.5. Any unitary transformation can be produced using CNOT gates and (a small set of ) one-qubit
gates.
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Note that

So, €7’z ig an infinitesimal rotation around the z-axis.

ity _ [cosqb —sind)] (69)

sing cos¢

Theorem 9.6. Combining these and defining R, (6) = e~i5% gnd stmilarly for R, and R, we can represent
any unitary transformation (which is on the Bloch sphere) by applying

R (61)Ry(02) R (03) (70)

We can get any unitary with determinant 1, but global phase is irrelevant in QM, so this is sufficient.

9.2.3 Properties of Pauli matrices

Recall
S RS A
We have
o2 = 012/ =o=1, 00k = 1€j,107. (72)

9.2.4 Hadamard transform

Definition 9.7 (Hadamard transform). The Hadamard transform is

1 Hmfl Hmfl
Hy =1, H,=— 73
0 \/i |:Hm—l - m—1:| ( )
with properties H? = 1, Ho,H = 0,. Alternatively,
Hm = Hl & Hm—l- (74)
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10 September 29th, 2021

10.1 Gates for universal quantum computation

Any arbitrary unitary can be represented with CNOT, C-R,(6), and C-R.(§) gates. A C-U gate applies I
to the target qubit if the control qubit is |0) and U if the control qubit is |1).

We note that

o—i0/2
o.R.(0)o, = R.(—0), R.(0) = < ei0/2> (75)

We can construct these control-rotations based on a control bit with a cleverly designed negative rotation.

For an arbitrary U = R,(63)R,(02)R.(61), we can implement C-U with 1-qubit gates. Note that this is
because an arbitrary unitary matrix is a rotation of the Bloch sphere.

Note. There exists a circuit with six CNOTs and nine 1-qubit gates that does a Toffoli gate, a CCNOT.

Moreover, we can construct doubly controlled not gates, and C*-NOT gates where the first k bits must all
be |1) to apply the NOT gate.

10.1.1 Two-level matrices

This way, we can construct arbitrary unitary matrices by composition of two-level matrices.

Definition 10.1 (Two-level matrices). We consider the following two-level matrix:

where (ZL 2) is a unitary matrix.

A two-level matrix only affects the two rows and two columns which are non-identity.
We can construct two-level matrices with multiply controlled gates with n — 1 control qubits and 1 target

qubit, so that the unitary is in the last two rows/columns. We can move it to any arbitrary two row/columns
with a sequence of controlled NOTs, which we will discuss next time.
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11 October 1st, 2021

11.1 Two-level gates

Last time, showed any unitary can be decomposed into a product of two-level matrices. Recall that a
two-level matrix is given by

a f .
, where [ 5 7} unitary (76)

We also showed that we can construct Cn — 1-U with Toffoli, CNOT, and R, (8), R.(0) gates.

We want to be able to construct a two-level gate from C?~'-U. If we consider a general permutation matrix
P, the two-level gate is given by P~'C"~'UP.

11.2 Density matrices
We want to represent probabilistic mixtures of quantum states, for example if we prepare a state that gives
|0Y, |4+),|—) with probabilities %, %, %, respectively.

We can consider the density matrix given by
p="> pilvi)(vil (77)
i
where p; is the probability of seeing |v;). Important properties to note are: Trp = 1, p is positive semi-definite
and p = pf.

Note. Any positive semi-definite matrix on a quantum state is a density matrix.

Example 11.1. If we prepare a state that gives |0), |[+), |—) with probabilities %7 %7 %7 respectively, we have
1 1 1 111 0 174 L 1L -1 3 L

= —|0)(0| + = —|=) === - —| 2 2| = 2. 78

A LR I TR N e | R NI A P

We note that multiple probability distributions can give the same density matrix. Why do we use the
density matrix, if it is an incomplete description of the system? It turns out it is sufficient to determine any
experimental outcome:

Example 11.2. Consider

s (Go+dm). 3 (Gm-m). (79)

If we want to know what’s going to happen in a quantum system, we simply need the density matrix.

11.2.1 Probability of measurements

Suppose we have |v;) with probability p;. We want the probability of getting |w) in some basis of {|w;)}
given by

Zpi|<w|vi>|2 = ZMU}W&(WIU}) = (w] Zpilvz‘)(vq:lw = (wlplw) (80)

which is independent of the basis of the density matrix.
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Definition 11.3 (Mixed quantum state). A mized quantum state has p rank > 1. A pure quantum state
has p rank 1.

Moreover, «|0) 4+ 51 + v|2) is called a superposition of quantum states and p;|0){(0| + pa|+){+| + p3|—){(—| is
called a mizture of quantum states.

Note. A superposition of states is not the same as a mizture of states. A superposition of states could be
%\0) + %\1), while a mixed state could be |0) with probability 3 and |1) with probability 1. While in
both cases, we measure |0) and |1) with equal probability, they do not behave the same, for example when
a Hadamard gate is applied. A superposition is an inherently quantum mechanical property of the system,;
a mixed state reflects our uncertainty about how the system was prepared.

11.2.2 von Neumann measurements

More generally, suppose we have von Neumann measurement projectors Iy, Ily, - - 1T, with ), II; = I. We
want to show that results depend only on p. Assume states |v;) with probability p;.

We see projector II; with probability

Zpi<vi|Hj|vi> = ZpiTrHj|vi><vi| = TrTl; (ZpiTr|vi><vi|> =TrlLp (81)

where we have used the trace of a scalar and the cyclic property of trace, where tr(ABC) = tr(BCA).
The reduced state (after measurement) of observing the jth measurement outcome having started in the
|v;) state is simply

Wle) T

[T v (vl |v)

(82)

Using Bayes’ Rule, we derive the conditional probability we start with |v;) given that we observe the jth
outcome

pivilllilvi)  pifvill;]vs)

= (83)
> pi{vil 1L |vi) Tr(IL; p)
Then, we can calculate the conditional density matrix given that we observe the jth outcome:
H‘|Ui><Ui|H' pi<vi|Hx Ui> pz|1}z (7 H H‘pH‘
== pj = Z i’ 7 Sl b X 7J| — Z J ‘ ] J (84)

—  (vi[lL;]v;) trllip trIl;p trILp

the state we see  probability of obtaining result

where p; is the density matrix given we see the jth outcome.

Suppose we have two density matrices p1, p2 such that p; # ps. Claim: p; —ps # 0 = p; — p2 has nonzero
eigenvalues. Use one eigenvector from them. We have

(wl(pr = p2)|w) = A # 0 = (wlp1|w) # (w|p2|w) (85)

and p1, p2 do not have the same behavior, and we can experimentally distinguish between them.
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12 October 4th, 2021

12.1 Density matrices and partial trace

Last time from probabilistic mixtures of states. Today, we will talk about density matrices from missing
information about parts of entangled quantum states.

Example 12.1. Take [1)) = -2 |00) + %Hl). Alice measures in the {|0), 1)} basis, Alice gets |0) (Bob gets

5

1)) with probability 1 and [1) (Bob gets |0)) with probability 1.
If Alice measures in the {|+),|—)} basis. Alice gets (+[¢) and (—|¢), each with probability .

Thus a density matrix comes from discarding half of an entangled system. Suppose we have |[¢)45. Alice’s
density matrix is the partial trace over B of p,trg|¢) ()| and Bob’s density matrix is tra|i)(y)|. We show
that Bob’s density matrix doesn’t depend on Alice’s basis for measurement in general.

Definition 12.2 (Partial trace). Suppose we have a block matrix
p= {P Q} on A® B. (86)

Then

trP t
trap=P+ S, trpp = |:tf‘R tlllg:| . (87)

These results generalize in a straightforward way even to non-qubits, when A has dimension j X j and B has
dimension k£ x k.

Note. If you completely ignore Alice, Bob’s system behaves like tr4p 5. If Bob does not know what Alice
is doing, his state should behave the same whether or not Alice has measured it.

We show an example of the above calculation, but omit it from these notes.

Alternatively, we can represent the trace in a general form based on the basis of each system.
trap =Y aleilpleya,  trpp=Y_ pleilple)s (88)
lei)a le:) B
where |e;) 4 is any basis of A and likewise for |e;) p.
Note. The projection matrix represented by |0) 44 (0] is actually [0) 44 (0| @ Ip.

Theorem 12.3 (Independence of basis). Suppose we have two bases |e;) a,|fi)a. Then |f;) = aijle;) where
ayj 98 a unitary matriz. Then

=S "filolfsy = 3 aiteslolesaiy = S eplolen) Y alpai = lejlples) = t'Yp  (89)
i i i i

J

—_———
85
so the partial trace is independent of bastis.
Suppose we have a tensor product matriz. Then
tra (pa ® pp) = pptrpa,  trp(pa ® pp) = patrpp (90)
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13 October 6th, 2021

No recording today.

13.1 No-cloning theorem
Theorem 13.1 (No cloning theorem). No quantum operation takes the state |1) ® |0) — |[¢) ® |¢).

Proof. We will use density matrices to show this fact, although there exist more general methods. Consider
if Alice and Bob hold the Bell state \%(|01> — |10)). This state has the property that Alice and Bob will
always get orthogonal vectors if they measure with the same basis.

If Alice measures in the {|0),|1)} basis, Bob has the density matrix

o = 001+ 01D = (3

= O

) (91)

o = g6+ 10D = (3 9) (92)

If Alice measures in the {|+),|—)} basis, Bob has the density matrix

These are the same density matrix, so Bob cannot tell what basis Alice used.

However, consider if Bob can clone his state after Alice has measured. Then, if Alice measures in the {|0), |1)}
basis, Bob has the density matrix

N[

pi = 5(100)(00] + [11) (1)) = (93)

However, if Alice measures in the {|+),|—)} basis, Bob has the density matrix

1 1
1 I 1
pp= g+ D+ + - --D=| 11 9
1 4 4 1
1 1

Since these two density matrices are different, then Bob can tell which basis Alice used. But without
classical communication from Alice, he should be able to make this cloning/measurement immediately after
Alice’s measurement, meaning she transmits information to him faster than the speed of light, which is a
contradiction.

O
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13.2 Quantum gates and circuits
Definition 13.2 (Hadamard gate). The Hadamard gate is
1 /1 1
i=7( )
H is its only inverse: H? = I. Moreover we have that
Ho,H =0, Ho.,H = o, HO‘yH:O‘;;

The tensor product of n Hadamard gates is the Hadamard transform.

13.2.1 CNOT and Hadamard gate identity

First, consider the following result:
1 1
CNOT|-)|=) = CNOT(|0) — [1))(0) = [1)) = 5(10) +[1))(|0) — |1))

In this case, the target qubit stayed the same, and the control bit changed!

Now we consider the quantum circuit

——

(96)

where we have used the identity that Ho,H = o0,, and a C-Z is the same even if the control and target
qubits are flipped (since the action on the qubits is symmetric up to a phase). That is, SWAP o C-Z o

SWAP = C-Z.

Note. Thus, we’'ve shown that putting two H gates before/after a CNOT reverses the direction of a CNOT.

This is an example of a more general QM principle: “back-action."
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14 October 8th, 2021

14.1 Points on a Bloch sphere

Lemma 14.1. Let {|vg),|v1),...,|vk—1)} be an orthonormal basis for a quantum state space. Then,
k—1
> lvid(vi| =T (98)
=0

This can be easily shown by applying a unitary transformation.

Note that any arbitrary point on the Bloch sphere can be represented via rotation transformations,

(a, B,7y) = (cos ¢sin B, sin ¢ sin B, cos §) = cos g|0> + €' sin g|1) (99)

Consider a point («, 3,7) on the Bloch sphere and consider looking at the matrix
My g~ = aoy + oy +702, where o + 82 ++%2 = 1. (100)
Note that
tr(aog + oy +vo.) =0, (aog + Poy + V0.’ =1 = ao, + Boy + 0. = |v)(v| —|v)(v].  (101)

2
where Maﬁﬁ

Then we can derive |v) from M, g, by

=] = its eigenvalues are +1. This matrix is also Hermitian and thus diagonalizable.

% (I + a0y + foy +70.) = % (lo) (ol + |0) (@] + |v)(v] = [0)(D]) = [v)(v]. (102)

A density matrix p corresponds to a point inside the Bloch sphere and on the Bloch sphere if p is rank 1.
Note. I and the Pauli matrices (o, 0y,0,) form a basis for 2 x 2 matrices.
If p a density matrix, then trp = 1. We can write

p= (I +ao, + foy, + 70 (103)

for any density matrix. Note that trp =1,trl =2 — (= % From p, we can get coordinates on the Bloch
sphere.

Note. a? + 32 ++%2 > 1 = p has negative eigenvalues.

We then show the example for deriving the state v for a point (a, 8,7) = (%,O, %), halfway between
(1,0,0) (I+)) and (0,0,1) (|0)).
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14.1.1 Two points on the Bloch sphere

Suppose we have two points on the Bloch sphere, |v1), |v2).

Q104 + Blo—y + 702
2 )

Qo0 + ﬂQUy + 720,

1
o) (] = 51+ 5

o2} a] = 3T+ (104)

We want to determine the relationship between the angles |(vi|va)| = cos¢ and (a1, 81,71) - (e, B2, 72) =
cos . We have

trfvr) (va][v2) (va| = tr(valvr) (vi]vz) = cos® (105)

and

1
1[I+ @10z + Bioy +710:) (1 + 200 + P20y +7202)]

1+ cosf

5 (106)

1 1
=4t (I +araol + 1ol + 172l +---) = 3 (1 + (a1, B1,71) - (@2, B2,72)) =
where we drop the terms which are products of Pauli matrices (and are thus Pauli matrices themselves),
since they have trace 0. Thus, the only terms that remain are those with 0,0, = I, with trace 2.

Setting these equal, we have

1+ cosf

cos? o = 5

(107)

NS

14.2 Information in qubits

Theorem 14.2. You cannot send an unknown qubit without classical information

Proof. Suppose you could. Then A could send a qubit to B, who could duplicate the digital information
and send it to C, who would then have cloned the qubit, violating the no-cloning theorem. O

So you can ask, how much information is in a qubit? If you have «|0) + §|1), then you have two complex
numbers, which takes infinite bits to represent unless you specify some precision of the numbers. On the
other hand, the theorem above implies no amount of bits can encode a qubit.

Theorem 14.3 (Holevo). You can only extract n bits of information from n qubits.

How to resolve all these claims about the amount of information in qubits? Simply put, quantum information
and classical information are different.
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15 October 13th, 2021

Announcements

e Today, a lecture on quantum teleportation

15.1 Quantum teleportation

On last Friday, we showed you cannot send a qubit in isolation over a classical channel. This is actually not

true if the sender and receiver share an EPR pair.

15.1.1 Teleportation protocol

Consider the following situation. They start out with a two qubit state %UOO) +111)). Alice has a different,
unknown qubit «|0) 4+ §|1) that she wants to send to Bob. Alice measures her unknown qubit and her qubit
in the EPR pair, and then sends to Bob two classical bits. Then Bob will be able to use his half of the EPR
pair and the two classical bits to reconstruct |¢). This doesn’t contradict the theorem from Friday, since
any third person will not share the required EPR state with Alice or Bob to perform this action.

Rcren%
state
4
Sender g
Two classical /

». bits

Qubit in
unknown

state W

EPR Pair
of qubits

Figure 1: Teleportation protocol schematic

So how does Bob implement teleportation?
Definition 15.1. The Bell basis (for 2 qubits) is
1 1 1
— —(]00) — |11)),
7 \/5( 00) — [11))

where all states are mazimally entangled.

(100) +11)), (I01) + 10)),

Sl

2

We start with |[¢) = %(Q‘Oﬁh + 811 4,) ® (|00 4,5 + [11) A, B)-

L (jo1) — [10)) (108)

S

2

Alice then measures A1, A in the Bell basis, and sends the results to Bob. Some of the possible results after
Alice’s measurement are (each of these has probability 1/4 based on the four possible Bell basis states)

(
(

Sl sl
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(00Las + (1Ulas) 1) 6) = 3 (@I0)s -+ 5I1)0) (109

(014, = (10La,) 1) 6) = 3 (@l1)s — 510)) (110)



In the second case, we see
1 1
7y (al1) = 810)) = ~i (al0) + B1)) (1)

We observe that we can apply similar Pauli transformations for each of the four cases to transform between
Bell states. We can thus see that each of Alice’s 4 measurement results (each of the 4 Bell basis vectors)
puts Bob’s qubit in a state that, after you apply I or o; as necessary, results in |1)). So Alice only needs to
send which results she observed to Bob (which takes 2 bits), and Bob can then apply the correct o; or I to
achieve the correct qubit, completing the teleportation.

Now, we can show the above more concisely with

os @am\f(|00> + 1) = 7(|00> +|11)), (112)
y & Ty \f(|00> +|11)) = 7(|OO> + |11)), (113)
o, ®az\f(|00> + 1) = 7(|00> +|11)). (114)
Also we have
S(00] + (11])aak)a @ (100) +11) a5 = 1) 5 (115)
and
S(000] + (110 © 07221) 4(100) + [11)) 1,5, = ) (16)

S 01|+ (100 4,02(00) + [11)) a5,

[Y)B = %((01\ +(10)[¢) 4,072 (100) + [11)) 4,8, = 072 [¥) 5 (117)

052%(<01\+<10|)|¢>A1 a2(100) + [11)) 4,5, = 052[¥) - (118)

This is Bob’s state when Alice gets the third basis element as her measurement, and we can repeat for the
other basis elements.

15.1.2 Teleportation circuit

Let’s construct a circuit on two qubits, followed by measurement on both qubits. We want the following
measurements to correspond to the following input Bell basis states:

L (jo1) - 10)).

L 01y +10),  110) = —=(j00) - [11)), - —
(119)

100) = ——(j00) + [11)),  [01) — = v

V2

How can we construct this circuit that maps Bell states to |00),]01),]10),]11)? We can construct the inverse
first, which turns out to be a Hadamard on the first qubit followed by a CNOT. The inverse of this is a
CNOT followed by a Hadamard on the first qubit.

So the total circuit for performing teleportation is, apply the CNOT and Hadamard above to the first two
qubits, measure them and convert the information to two bits, and then apply o, if the first bit is 1 and
apply o, if the second bit is 1 on the last qubit (Bob’s qubit).
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|B00)

XHz= 1)

Figure 2: Teleportation circuit

In the below figure, the top two wires are Alice’s qubits, while the bottom wire is Bob’s. The bottom two
wires are the entangled Bell pair. Double wires are classical bits, while single wires are quantum bits.
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16 October 15th, 2021

Announcements

e Midterm in 1.5 weeks (not in the main room!)

16.1 Superdense coding

Superdense coding is the inverse of teleportation. With Alice and Bob sharing an EPR pair ( %(|OO> +]11)),
Alice can send 2 classical bits of information to Bob by sending one qubit.

Recei ‘“A
bits

4
Sender j’.
One qubit o
/ :
Two classical

bits

EPR Pair
of qubits

Figure 3: Superdense coding protocol schematic

Theorem 16.1 (Holevo bound). You can only encode n classical bits in n quantum bits.

Note. This theorem does not apply because we share an EPR pair.

Recall there are four Bell states:
1 1 1 1
V2 V2 V2 V2
Alice applies one of the matrices I, 0,,0y,0. to her qubit (part of the EPR pair) to get one of these Bell

states. Alice then sends her qubit in the EPR pair to Bob. Bob then measures in the Bell basis and learns
Alice’s Pauli matrix. This sends 2 bits of information.

(100) + [11)), (l01) + [10)), (100) — [11)), (lo1) —[10)) (120)

encodin,
blr Reotndg - T
|
|
|

decoding

Figure 4: Superdense coding circuit

In the diagram, we note that double lines denote classical bits and single lines denote quantum bits.

Superdense coding was discovered as part of a proof that 1 qubit is exactly equal to 2 bits when sharing an
EPR pair (can’t transmit more qubits without more bits and vice versa), showing quantum teleportation is
optimal.
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16.2 Reversible gates

The Toffoli gate is a CCNOT gate. It can be used to make many gates:

AND(z,y) = Toffoli(z,y,0) — (z,y,z Ay), XOR(z,y) = Toffoli(x, 1, 2) — (x,1,2 Vy), (121)
NOT(z,y) = Toffoli(z,1,1) — (x,1, —x), FANOUT(z) = Toffoli(x, 1,0) — (x,1, z) (122)

with appropriate choices of which of the Toffoli outputs to extract. This makes the Toffoli gate universal for
reversible computation.

We can write any classical circuit with Toffoli gates. This is not good enough because in quantum
computation, we need to do interference.

Example 16.2. Suppose you have a state given by %(\O) +|1)). Applying an H gate sends it to |0).

Suppose you obtained the |0), |1) states from Toffoli computations, which leave behind some left over state
lco), |c1). Then applying a Hadamard gate here actually gives (assuming |c1) # |c2)

| (0, -,
H—(0) © eo) + 1) @) = ﬁ(ﬁ ooy + (222 |1>) (123)

which is not what we want. So, we have to get rid of intermediate results.

We will do this with FANOUT gates, which do not produce extraneous outputs (and thus have no interme-
diate results).

16.2.1 Computation of f(x)

Now let’s consider a computation of some function f(x), where we keep the input around because we want
a reversible computation.

Step 1: We take the input, as well as work bits 0%, 1%, 0°, 1. (We require work bits that are both 0s and 1s
because Toffoli gates don’t generate any new bits, e.g. only input work 0s do not allow for 1s). Doing the
computation with Toffoli gates will leaves us at the end with the input, the output, some junk (intermediate
work space), 0°, and 1.

Step 2: We can copy the output into 0° with Toffoli gates because Toffoli(x, 1,0) = (z,1,z). So now we
have input, junk, output, output, 1.

Step 3: We can run all of the Toffoli gates that generated the junk and the first copy of output backwards,
to get input, 0%, 1°, output, 1. That leaves us with input, 0%,1°, output, 1, which has no left over
intermediate results to mess up the interference.

So this is a way of performing reversible computation with Toffoli gates. But we need to keep the input
around, since otherwise we can’t apply Toffoli.

input 000...0 111...1 000...0
input output junk 000...0
input output Jjunk output
input 000...0 111...1 output

[ gyt

Figure 5: Schematic of reversible Toffoli computation

16.2.2 Computation without keeping input
If we have a classical circuit taking z to f(x), and a classical circuit taking y to g(y) where g = f~1, then we

can use the above circuit that keeps the input around, reverse it, and append it to the earlier computation
to implement this.
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17 October 18th, 2021

17.1 Deutsh-Jozsa algorithm

Definition 17.1. A Hadamard transform is a Hadamard gate on each qubit.

We want to see how H®"|j) behaves on some |j) where j is a binary string length n.

Example 17.2.

HE5(0)[1)]1)[0Y]0) = ——(J00000) + [00001) + - -+ — [01011) + ... (124)

3

Claim.

HE"j) = ﬁnZ 1)74]k) (125)

where k ranges over all binary strings of length n and the j- k is the dot product in binary (number of places
where both j and k have a 1): 01100 - 01011 = 1.

17.1.1 The Deutsh-Jozsa problem
Given a binary function f : {0,1}" — {0, 1}, you are promised f is either constant or balanced (number of x
such that f(x) =0 is the same as the number for which f(z) = 1). Determine if f is constant or balanced.

Classically, it takes 2"~ ! + 1 time in the worst case, but is easy with a probabilistic algorithm.

17.1.2 Algorithm

We assume we have a phase oracle Uslz) = (—1)7®)|z) for f(z) with binary output. This is called a
phase oracle because it encodes information about the function in the phase. The 5-step algorithm is as
follows: Start with [0™). Apply H®", then Uy, and then H®". Then measure the bits of the quantum state
individually. Let’s see why this works:

10) + 1)\ ®" 2" —1 2n—127—1 (i
H®"U;H®"|0") = H*"U <> =H®"— D(=1)7"|k
e = nenwy (10 i Z 0= 5 TS
(126)
Case 1: Suppose f is constant. Then f(j) = f(0). So,
HE"UpHEM0") = o (=1)7(©) Z 17 *[k) = (=1)70) (127)
7,k=0

since if k = 0 you get 2"|0) from the sum and for k # 0 you get 0 from the sum since there are as many j’s
that give j -k mod 2 = 0 as those that give j -k mod 2 = 1. So, we see |0™) with probability 1
Case 2: Suppose f is balanced. Then the component for £k = 0 is

;2
5 (=1)/D|0) =0 (128)
3=0
Since the amplitude is 0, then the probability of seeing |0™) is 0.
So, we can conclude if we measure |k) = |0"), f is constant. If not, then it is balanced.

This algorithm took one phase oracle call, and linear gates in n, while deterministic classical algorithm takes
27/2 gates. So, this is exponentially faster. However, randomized algorithms can do very well with a constant
number (20 or 30) queries, so this is not a very convincing argument that quantum computation is powerful.
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17.2 Phase and bit oracle equivalence

Note (Phase oracle). A phase oracle cannot tell the difference between f and 1 — f. Because

1 -
L flz)=1
and they differ by a global phase.
Suppose we were given a bit oracle for f.
Definition 17.3 (Bit oracle). A bit oracle Oy is
Oflz)lz) = [2)[z @ f(x)) = Oflx)|0) = |x}|f(x)). (130)
We can also construct a controlled bit oracle:
COy[0)|a}|b) = [0)|a)|b),  COf[1)|z)[z) = [1)|z)|z & f(x)). (131)
We would like to construct a phase oracle from a bit oracle. Consider
0.0;|2)[0) = (1) @D|z)| f(2)) = O;0.04(0) = (1)’ |z)|0). (132)

This gives a phase oracle from a bit oracle.
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18 October 20th, 2021

Announcements

e Midterm Wednesday

18.1 Classical complexity theory

In theoretical CS, we consider algorithms efficient if they are in the class P; that is, running in polynomial
time in the length of the input. In 1936, Alan Turing defined Turing machines, which became standard objects
to reason about computer science (although transformations between different classical computational models
preserve P).

We now discuss the class NP, which are the set of problems which can be easily verified (e.g. 3-colorability
of a graph). Formally, this requires a polynomial time algorithm that can take a problem instance and a
witness and verify that the witness provides a solution to the problem (e.g. a 3-coloring, checking all edge
pairs).

Steve Cook first defined NP-completeness, where if you can solve one problem in the class in polynomial
time, you can solve all NP problems in polynomial time. Cook found a master problem that can solve any
problem in NP.

Claim (Cook). Given a TM and program/problem B is there an input of length n that runs in polynomial
time and outputs “yes"?

We note the nested complexity classes given in the diagram

EKPTIME
PSPAcE

NP

Figure 6: Relevant complexity classes

Definition 18.1 (BQP). BQP is the class of problems that can be solved on a quantum computer with
high probability in polynomial time.

Definition 18.2 (BPP). BPP is the class of problems that can be solved on a classical computer with a
random number generator with high probability in probability time.

There is a lot we do not know about relationships between these classes. For example, how do BQP and NP
compare? In general, people believe they are incomparable. We also don’t know if P=PSPACE. However,
we do know that PSPACE=QPSPACE.

Theorem 18.3 (Church thesis). It doesn’t matter how you define computable functions, any reasonable
definition is equivalent to Turing machines.

Theorem 18.4 (Cobham thesis). Any reasonable definition of machine computes the same class of functions
in polynomial time. This is disproved by quantum computers!
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18.2 Oracles

We consider algorithms in group theory. For generality, we consider group elements are represented as
oracles. In the oracle model, we assume different operations (O,, for multiplication, O; for inverses) are
oracles and can be used regardless of how it is implemented on a Turing machine (Church Thesis).

18.2.1 Quantum oracles

We show the equivalence of bit and phase oracles. Last time, we showed a bit oracle = phase oracle,
which we review. A bit oracle operates as

Oyla)|z) = |2)|z ® f(x)) (133)
where |z| = n, |z| = 1. We can construct a phase oracle by computing | f(z)) in the second register, applying

a Z gate to get (—1)7(®) and then uncomputing | f(x)).

We now show phase oracle = bit oracle. We assume f(0) = 0 to account for the possible global phase in
the phase oracle. The basic idea is that we put it into the %(|O>|O ..0) +|1)|x)) state, and then use the

phase oracle to turn |+) to |—).

In more detail, we put a register into %(\0) + |1)), perform a conditional FANOUT to get %(|O>|O 0+

D).

1
ﬁ(|$>|0>\0--~0>+|$>|1>\$>)- (134)

Now, the phase oracle is applied, after which we apply the conditional FANOUTS in reverse, taking it to

|£)|0)]0...0) — |x)|+)|0...0) —

i2(|96>|0>|O -2 0) + (=1 @z)[1)]0)

1 T
= 500} + () P)o...0) - (135)

- %(Iw>|0>|0---0> + (=)D z)[1) ) —

7%

5

Now, we apply the final Hadamard gate, which gives us

)] f())]0...0) (136)

which is the bit oracle for f we desired.
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19 October 22nd, 2021

19.1 Simon’s problem

This problem was invented to show quantum computers could be faster than classical computers. We are
given a function f : {0,1}" — {0,1}™ with the 2-to-1 property that f(z) = f(z @ ¢) for some c. We are
asked to find ¢ for this function.

Classically, if we find f(z1) = f(x2), then ¢ = x1 @ x9. By trying out evaluations of inputs, we can choose
them carefully to eliminate an additional 7 — 1 possible values of ¢ on the jth call to the function, one for
each XOR with a previously tested value. So after ¢ evaluations, we have eliminated #(t — 1)/2 values for c.
To be sure of finding ¢, we need

t(t—1)
2

> 9" 1 = t 20 F/2 (137)

evaluations.

If we consider classical randomized algorithms over functions with Simon’s property, we know that c is
equally likely to be among any of the values we have not tried. So, we need to eliminate % of all possible
values of ¢ for a 50% chance of finding ¢, which has runtime t ~ 2"/2.

19.2 Simon’s algorithm

Assume we have a bit oracle

Oylz)|z) — |2)]z & f(x)). (138)
Recall the Hadamard transform:
2m—1 ‘
HEj) = Y (=1)7"[k). (139)
k=0
Simon’s algorithm is the following;:
on 1 on 1

(H & 1)0,(H & D0")0") = (H & 10y 3275 > WI0") = (H o Dz 3 DIFG)

= LSS GGy (140)

k=0 ;=0

We then measure the registers. Note that the probability of seeing |k)|f(j)) is the square of the amplitude
in this state; note only f(j) = f(j @ ¢) can produce this value. So, the only amplitude contribution is

1 ((71)j.k+ (71)@@0)%) _

on

o (C1P 4 (C17490k) = Laph e (ceh) ()

This expression is 0 if ¢- k =1, and it is :I:% if ¢- k = 0. Then, we will never see k if ¢- k = 1, and we will

have probability 27,%2 of seeing k if it is perpendicular to c.

So, if we repeat the process and find n — 1 linearly independent vectors perpendicular to ¢, then there is
exactly one vector in n—dimensional space that is perpendicular to them all, so it must be c.

If we have some vectors, we can use Gaussian elimination to check that they are all linearly independent
(and remove any linear dependence). We can do this by XORing a given row (vector) with all other rows
below it that has a 1 in the desired place spot. Once it is in row-echelon form, we are done.
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Now, we can derive the perpendicular vector by working from the last row (vector). At each step, we can
derive one more bit of the vector ¢; using the n — 1 linearly independent vectors, all but 1 of the coordinates
of ¢ will be determined by some row, which gives a unique non-zero vector c.

How long does our algorithm take to find n — 1 linearly independent vectors? At the first step, there are
2" — 1 vectors perpendicular to ¢, and at the ith step generally, there are 2% — 1 vectors that are linearly
independent from the first ¢ — 1. Each probability of finding a linearly dependent vector is the reciprocal of
that value, and each is less than %, so the expected total number of steps is O(2n). Since each step takes
time O(n), the total runtime is O(n?), which is much less than the exponential classical algorithm.
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20 October 25th, 2021

20.1 Fourier series

Consider a periodic function with period 27. You can write it as

c+ Z o cos(jz) + Z B sin(kx) (142)
k=1

j=1 =

This is good for analyzing periodicity. Simon’s problem has periodicity! f(z) = f(x @ ¢) is periodic with
period mod Z%. The problem of factoring is very related to periodicity.

In real life, you never have a continuous function but a bunch of samples from a continuous function. Can
use the discrete Fourier transform (DFT) for this.

Definition 20.1 (Discrete Fourier transform). Suppose you have a m samples spaced 1/a apart from each
other. The DFT gives you m values in k space for your Fourier components. Label the points ag, a1, ..., n_1.
These get taken to bg, b1,...,bn_1, by

b=y e 2mk/ng, (143)
=0
The inverse DFT is
a; = 1 Tf e2miik/np, (144)
=0

Definition 20.2 (Quantum Fourier transform). The gquantum Fourier transform is a unitary transformation
that satisfies

n—1 n—1

1 - 1 g
) = —= > kM), k) = —= Y e MR ) (145)
Vin k=0 Vin =0

We can write the matrix for the quantum Fourier transform. Let w = e27/™. We have

(1 1 1 1 ]
1 w w? Wt
1 1 W2 OJ4 wn—Q
ﬁ 1 OJ3 OJG wn—3 . (146)
_1 wn—l wn—Q w |

We note that this is unitary. The inverse quantum Fourier transform is given by

1 1 1 1
1 w ! w2 w—(n=1)

1 1 w72 w74 wf(n72)

NG 1 w3 w6 w—(n=3) (147)
A

which is just the conjugate transpose of the matrix for the quantum Fourier transform.
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20.2 Implementing the QFT

We want to decompose this into one and two-qubit gates. We will assume n = 2” so we have L qubits. We
have

2k 1 .
Z 627rzjk/2 (148)
n=0

and we will represent j = jr_1jr—1...jJ0 and k = kr_1kr_o ... ko as binary strings and

L-1 L—1
=025 k=) k2 (149)
s=0 t=0
We can substitute the binary expansions of j, k into the quantum Fourier transform and we have

2l 1

. . . 1 i SSE—l S L—1gstt—L
li—1)lie—2) .- |do) = 5L/2 Z 2™ 2520 2o 2 ]5kt|kL71>|kL72>...|k0>
kr_1...kog=0

L_1 L—-1L-1

1 ot
=17 Z H H62m2+ Lmt“% Olkr_2) ... |ko). (150)

k}leoOSOtO

We can show how we turn |jr—1)...|jo) = |kr—1) ... |ko) while applying relevant phases.

Case 1: s+t=L —1. Then
627Ti28+t_Lj5kt _ eﬂ'ijskt _ (71)jsk‘t. (151)

Case 2: s+t <L —1. Then
22 T ke — (152)

In the first case, we recall the Hadamard gate

I

7=0 k=0

which applies a -1 phase from |1) — |1) and a +1 phase otherwise. Then we should apply a Hadamard gate
of the form

\[ Z Z 1755 | ky) (G| (154)

Js=0 k=0

and t = L —1—s turns |j5) — |k:) and applies the correct phase. Then it is clear that we can turn all qubits
|7s) — |k+) by applying L Hadamards one at a time.

For the second case, we need to show that this can apply other phases of the form

827\'7,'2_2]'5]% (155)

for some £ = L — s —t > 2. We can implement these as controlled R, gates with

1 0
R, = {0 627”.2_14] . (156)
We note that
1
1 o
C—Ry= ) = 100){00] + [01) (01| + [10)(01] + €27/ [11)(11] (157)
e2mi/2

so this applies the rotation <= |j,) = |k:) = |1), which in fact they are.
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21 October 29th, 2021

21.1 More quantum Fourier transforms

This is a continued discussion of the last lecture. Note that the circuit for the quantum Fourier transform

for L = 4 is given by

sy —{ # | ’j_‘

2) H (] Jj
3> (7] (5] (4]

1L

B (k] 7]

Figure 7: Quantum Fourier transform circuit

where
1 0

1 0 1

The general circuit is given on page 219 of the textbook.

We can do the multiplication for L = 2 explicitly. The circuit is

ko)

Figure 8: QFT circuit for L = 2

0

6177/8

ko)
k1)
k2>

|%3)

|

(158)

where we can compute (I @ H)(C — S)(H ® I) and do a SWAP gate to get the qubits in the correct order.
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22 November 1st, 2021

Today, we will cover an application of the quantum Fourier transform.

22.1 Phase estimation

Suppose we have a unitary U and an eigenvector |vg) where
Ulvg) = €% |vg). (159)

We seek to find an approximate #. The phase estimation algorithm does not give accurate estimates of 6
£
unless we take high powers of U. Let us assume that we can get compute U? in polynomial time in ¢.

Suppose the unitary takes a number s mod p and multiplies it by another number ¢ mod p and
Uls mod p) =|gs mod p). (160)
Then

U*¥|s mod p) = |g"s mod p). (161)

If we know ¢* mod p, U* is no harder to implement than U. We can find g22 mod p efficiently by repeated
squaring.

The basic idea for the algorithm is to create the state
1 — iko
T ’;) e™*|E). (162)
This looks like the quantum Fourier transform. Recall QFT maps
2k 1

1 .
|]> N Si73 Z 6271'2]]6/2L|k>. (163)
k=0

Note that {|j;)} form a basis and so the right-hand side also forms a basis.

We note that if § = 2mm/2% for some m € Z, then it is one of these basis states. Then to identify 6, all we
need to do is to measure in that (right-hand side) basis. We can achieve this by taking the inverse quantum
Fourier transform, which takes

2l 1 o
si7m 2 €T k) > 1) (164)
k=0

and then we measure in the standard basis. If we measure j = 6 = 275 /2.

We now need to show how to create the desired state and that this algorithm works for § # 2wm /2L for
some m € Z.

22.1.1 Creating the desired state

Let us assume that we can implement the transformation U 2" efficiently in polynomial time. Consider the
quantum circuit

If the input is k = ky_1kr_o... kg, the circuit applies Uko+2kitdkat 428" ko 4 |vg), which is the same
as U*|vg) = €™*? which gives output |k)e?*.
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|kr—1)
|kp—z)

Jk2)
ey

[ka)

Figure 9: Circuit for creating desired state

Note that in order to get our desired state, we input
2k —1

oz 3 Bleo) (165)
k=0

into the circuit. We can do this by putting a |+) state into each of the first L quantum wires.

Now we observe what happens if we take the above state and apply the inverse Fourier transform, following
our algorithm. For § # 27m /2L, the inverse Fourier transform is

2l 1

1 Comiik/L
k) — I3 D ek, (166)
§=0
Plugging this into (164), we obtain
1 2l 1 _ 2l 1 o 1 2l 1 2l 1 ' o
27 Z ezk@ Z 67271'1]’6/2 |l€> — 27 Z ‘j) Z ezk(9—27r]/2 ) ) (167)
k=0 j=0 J=0 k=0
The probability of seeing |j) is
2
281 i(280-2mj) |?
1 ik(6—2mj/28)| _ 1 1—6( /
2L Z et )| = AL |1 _ gi(6—2mj/2E) (168)
k=0

Note that the value of j we obtain gives us a good approximation of §. We can bound the numerator by 2
and approximate the denominator by (6 — 275 /2L). Let j/ be the value that gives us the right value of 6.
That is, 275’ /2% = 6. Then the probability seeing some j > j’ + « or j < j’ — « is around

1 2

4L

2
2m (5’ — 5)/2*

1

 |mal”

(169)

which shows that j’ is tightly concentrated around 226/(27) and we can get a good estimate of the phase 6.
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23 November 3rd, 2021

Today, we will talk about order-finding and factoring.

23.1 Background

For factoring problems, given N, we want to find P,QQ < N : PQQ = N. To break RSA, we need to factor
when P, Q) are prime.

For the quadratic sieve (QS) algorithm, which is the second fastest classical factoring method, and for
quantum factoring, we want to find two integers where z? = y?> mod N but z 2 y mod N. Note that by
factoring the first condition, we have

(x—y)(zr+y) =0 mod N (170)
and we have x —y, z 4y our desired factors. This is a common technique used by many factoring algorithms.
Example 23.1 (Factoring). Consider
32221024249 mod 65 = 322 —7*~(0 mod 65 = (32+7)(32—7) mod 65 = 39 x 25 mod 65

(171)
where the first factor contains 13 and the second factor contains 5.
The quadratic sieve works kind of like this, but we will use period finding to find x2, 2.
23.2 Shor’s algorithm
Given a function f:Z — Z, f(x) = f(x — ¢), we want to find c.
The function we will use is
f@)=a" mod N (172)

Example 23.2. Suppose we want to factor N = 119 and we choose z = 2. We can do some calculations
and note that f(24) is when it starts repeating.

Because there are finite number of residues modulo N, the sequence is guaranteed to start repeating. We
will get a* = a**" mod N. If (a, N) = 1, we obtain a” =1 mod N and 7 is the period of the sequence.

Note that if r even, this gives
2
(a’"“) =12 mod N. (173)

If /2 = —1 mod N, this does not work and we need to try again. Note that r odd also does not work.

Theorem 23.3. Choose a random a. The probability that this method works is weakly greater than % That

18, repeating this process for different values of a will eventually give a factor in polynomial number of trials.

To find the period of a sequence, we can consider the unitary transformation that takes us from one element
of the sequence to the next. In this case, we have

Ugly mod N) =|ay mod N). (174)

This is reversible since (a, N) = 1. It is possible to find a=! mod N in polynomial time in the length of N
using the Euclidean algorithm.

Recall a theorem from earlier in the course:
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Theorem 23.4. If there exists a reversible circuit that takes

[2)|0) = [2)|f (), [2)]0) = |&)|f " (2)) (175)
then there exists a reversible circuit |x) — |f(x)).
Then it there exists a reversible circuit for U,. We can apply the phase estimation algorithm by performing

ok .. 3 ok _
ya . This is easy because U; = 2" mod N
implement U ,+ and can do phase estimation.

We can find a2° mod N using repeated squaring and then

We seek to find the eigenvectors and eigenvalues of U,. Consider the quantum state
1
T

When we apply U,, we obtain

‘<k> — (|1> + 2iﬂk/r|a> + e47m'k/r|a2> ot e27r(r72)k/r|ar72> + e27r(r71)k/r|ar71>) ) (176)

Ua|§k> = W (‘a> 4 2z7rk/7|a2> + e47rzk/7|a3> 4t 627r(7—2)k:/r|a7—1> + 627r(7—1)k/7|a7>) ) (177)

Note that |a”) = |1) and so U,|¢x) = e 2™%/"|¢;,) and we have found 7 eigenvectors of U,. If we find
one of these eigenvectors, we can use phase estimation to approximate the eigenvalue, which gives us an
approximation of 8 = k/r.

Realistically, we do not have one of these eigenvectors. We will do phase estimation anyway. If we want to
factor an L-bit number, we will use the phase estimation and quantum Fourier transform with 2L qubits.
This will measure the eigenvectors and eigenvalue and we will get a state close to |(;) and phase estimation
will give us a good approximation of k/r in the form d/22F ~ k/r for some d. We can find r from this using
some fancy number theory method called continued fractions.

We can consider starting in the algorithm in state |1). We have

1 r—1
=7 216 (178)

so when we apply phase estimation, we will get a random |() and eigenvalue e~27/",

Next lecture, we will talk about the number theory justification that makes this algorithm possible!
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24 November 5th, 2021

Announcements
e Midterms are graded!

Today, we will do the number theory associated with factoring. We will provide a gist of the theory that
will give us the general idea of the proofs. To go in-depth, we would need another few lectures, which we
unfortunately do not have.

24.1 Factoring background

The quadratic sieve is a classical algorithm that takes time e¢Ve8 NVloglog N ' The quantum algorithm (Shor’s
algorithm) takes quantum time O(log N3).

Both if these algorithms use the idea that if N = PQ and (A— B)(A+B) =0 mod N and A =+1 mod N,
we can get one factor from A 4+ B and the other factor from A — B.

The best algorithm that does not use this scheme is the number field sieve, which takes time e€ VTog N (log log N)*/?

24.2 Factoring details

The factoring algorithm gives us A2 = B2 mod n. From this we can get the factors A+ B, A— B. However,
these are not necessarily true factors (they may be multiples of factors). We can see this because (A +
B)(A — B) = mN for some integer m. Instead, gcd(A, N) and ged(B, N) will give us factors. These are
easily computable with the Euclidean algorithm.

24.2.1 Chinese remainder theorem

Another part is picking a for our period finding step. We can show that the probability of a random a
working is > 1/2.

Theorem 24.1 (Chinese remainder theorem). There is a one-to-one correspondence between integers
mod N and pairs of integers mod (P, Q)

Example 24.2 (CRT). Suppose N =15,P =3,Q =5. Then 7 = (1,2) mod (P, Q).

24.3 Continued fractions

Continued fractions are a way in which we can represent arbitrary rational numbers.

Example 24.3.
12 1
41 34— —

2+72+%

(179)

Theorem 24.4. The convergents of a continued fraction are the closest approximations to the fraction.

In the 12/41 example, the first convergent is 1/3. The second convergent is 1/ (3 + 3) = 2/7.

In the last step of the factoring algorithm, we found the phase of p/r. The phase approximation algorithm
gave us

P _ d
o

We can then use continued fractions to get from d/2% to p/r.

(180)
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Theorem 24.5. If 22L > 212 then one of the convergents of d/2%F is p/r.

Therefore, we can guess values of r from enumerating the convergents. One way to quickly guess r is to look
at when the continued fraction values jump. This indicates a point where the change in the fraction from
each additional term of the continued fraction is very small, so you’ve probably reached the actual value of
p/r at the last term right before that jump.
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25 November 8th, 2021

Announcements

e The mean on the midterm was a 55/60 with standard deviation 6
e About one quarter of the class got a perfect score

Today, we will discuss discrete logs.

25.1 Discrete log problem

We note that there are cryptography systems based on discrete log that is much easier than RSA.

Let p prime and g be a generator for the multiplicative group mod p, (Z/pZ)™. Let h € (Z/p/Z)™ We seek
to find x : ¢* = h mod p.

Definition 25.1 (Generators). g is a generator if Vh € [1,p]32 : ¢* =h mod p.
Example 25.2. Consider p = 31. We can check that 3 is a generator of the multiplicative group.

25.1.1 Diffie-Hellman key exchange

Supose Alice and Bob want to create a secret that they know but no one else knows. Their only means of
communication is over a telephone wire that is being tapped.

One way to encrypt their message is to agree on a prime and a generator p, g. Alice chooses random x < p
and Bob chooses a random number y < p. Alice sends ¢ mod p and Bob sends Alice ¢ mod p. Note that
the secret is ¢ mod p.

If we know this ¢®¥ and use it as a secret key, we can use this as a secret key for a symmetric cryptography
system, and then we can communicate securely.

The problem. If we know p, g,¢%,¢gY mod p, can we find g*¥ mod p?
Note. If we know discrete log, we can break Diffie-Hellman!
We can find ¢* mod p for large . We can write z in binary and find
L
9.9%9%---,9> modp. (181)

We can multiply the associated powers of g in binary to find ¢g*. Consider x = 1015. Then we have

g = 1920 + 0921 + 1922 mod p. (182)
There are classical algorithms for discrete log, but we will consider the quantum algorithm that utilizes

period-finding.

25.1.2 Quantum algorithm
We will use period-finding. Let U, be our familiar unitary
Uy : |¢ modp) — |fg mod p). (183)

The eigenvectors for this map are the same familiar ones!

1
|Ck> = \/Zﬁ

where we have g?"! =1 mod p.

(|1> + 2k (=) | gy 4t/ (P 1)) 2y Ly (P 2R/ (p—1) ‘gp—2>) (184)
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Theorem 25.3 (Fermat’s little theorem). For p prime and (a,p) = 1, we have
a*”'=1 mod p. (185)

—2kmi/(

The corresponding eigenvalues are e P=1). Like last time, we have

1) (186)

.y
=== I
p—1i=
Then we can apply the phase estimation algorithm to get dz% and we can round it off to %. We require
2L > 2p.
Note. We can get U2" by multiplying instead by g>",m € Z.
We can consider

Upl¢ mod py = |h¢ mod p) (187)
where h = ¢g* mod p.

Claim. |() are eigenvectors of Up,.

Proof. Note that ;) = \/% S, e2ktmi/ (=1 g8y and

—

1 . 1 )
UnlCk) = Uy § e2ktmi/(p—1) gt’ — 2:6219(7”/(;0—1) gfgm

_ 1 e—27rikm/(p—l)ZeQﬂik[/(p—l)BQﬂikx(p—l)|gé+z>

vp—1 7

_ o—2mika/(p—1 2mik(£+x)/(p—1) ‘gHw) (188)

L
\/ﬁ%:‘f

[Cr)

with eigenvalue e~27#ke/(p=1) .

Then note that doing phase estimation twice gives both kxz/(p—1) and k/(p — 1) where the estimates come
from Uy, U, respectively.

We can then extract x by multiplying kx by the inverse of & mod p — 1. Note that we can get kx and x
because we already know p — 1.

Example 25.4. Let p = 31 and suppose we get 3—70, % = % With ¢ = 3,h = 16. Then we can find k by

multiplying by 77! mod 30 = 13. Note 7 x 13 = 91 = 1 mod 30. Doing this multiplication, we obtain

x=13x12 mod 30 = 6. (189)
Example 25.5. But if ¥ =5,k =0 mod 30, we cannot find ! We require then, that (k,p—1) = 1.
Theorem 25.6. We find (k,p — 1) relatively prime with probability

plp) .1

p ~ loglogp

(190)

where o is Euler’s totient function.

Note. We can find inverses by using the extended Euclidean algorithm.
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The complete algorithm is as follows. Given prime p and generator g, we consider U, and U}, where g* = h
mod p. We can apply the phase estimation algorithm on both Uy, U, to obtain estimates

kx k
= lﬁ (191)

b

from Uy, Uy, respectively. We can then extract z by multiplying E~! x kx mod p — 1 and we have our
discrete log.
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26 November 10th, 2021

Today, we will discuss Gover’s search algorithm. This algorithm is used to search the solution space of some
equation.

26.0.1 The problem

Consider the question of finding three cubes that add to 42. This problem was open for decades. The
solution was discovered last year by Andrew Sutherland (at MIT) and Andrew Booker that did not use an
exhaustive search.

A brute-force search would require checking 1034 pairs of numbers. We do this by asking if

Va3 + b €. (192)
A quantum computer can do this checking with ~ 107 evaluations of this. This is because quantum

computers somehow use diffusion to check all these pairs.

26.1 Grover’s algorithm

Consider a solution space of N things and one of them is marked. We consider a Grover oracle O,

(193)

O, ) = +|x), 2 not marked
PR —l2),  x marked

We have the algorithm as follows. We start in the superposition

1 N—-1
— x). (194)
/w2

We then apply the Grover oracle O,, apply a Hadamard transform H®" apply 2|0)(0|—I, and apply another
Hadamard transform. We repeat this procedure until we are done. Note that checking when we are done
collapses the state, so we just do this long enough until we think it is finished. Then we measure and get
the marked item with high probability.

Note. We have

+lz), |z} =10)
(20){(0] = 1) |} = : (195)
—|x), otherwise
which is fairly easy to implement. We note that
p Z
2HENONO N — T =20) (0| = I, )= 375 > _lo)- (196)
=0
Then we can actually start in superposition
1 &
%) = 575 Do 1a) (197)
z=0

which is approximately the same as starting in state space size N.

Using Grover’s algorithm can reduce the time in many other classical search algorithms.
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26.1.1 Intuition

Note that 21)(y)| — I reflects all amplitudes around their average value. We can see that % Zﬁf)l(d
computes the average value of the amplitude and Z?’:_Ol |i) applies this value to every state.

When we apply Oy, we reflect each of the amplitudes around 0 and the other three reflect them around the
average amplitude. Intuitively, the marked states start with amplitude ﬁ The first reflection takes the

marked states to —ﬁ. The average will still be almost exactly ﬁ so the second reflection around the

average takes the marked states to % We note that after the kth Grover iteration, the marked states have
2k+1

amplitude TN O(V/N) steps to have probability nearly 1 of finding the marked states.

More formally let there be N states, M of which are marked. Let |a) be the equal superposition of all
unmarked states and |3) be the equal superposition of all marked states

1 1
|a>:ﬁ Z ), 18) = —= Z |) (198)

x unmarked x marked

) =X ey ), (199)

The Grover iteration keeps the computational state in a subspace generated by |a),|8). We can imagine
1 € span{|a), |5)} and let 6/2 be the angle between |a) and [¢). Using trigonometry, we have

sinf/2 = /M/N = 0~ 2/M/N if M < N. (200)

and

Note then, that

Opla) =la),  Oplf) = —15) (201)

and

QU)W = 1) [y =2) — ) = [¥), Q)| = 1) [¥) = —|4) (202)

where [¢) is the state orthogonal to [t/). Then this is a reflection across |1/)! The product of these reflections
in the plane is a rotation by +6 &~ 2,/M/N degrees. We can repeat this again and get a rotation by +26.

We want this state to be rotated to the |3) axis, which is angle of approximately 7/2 from the original state.
This takes

/2 m |N
~ L2 203
2./M/N 4V M (203)

iterations.

Note that if we do not know M, we can measure in the {|), |3)} basis and obtain |3) with probability 1.
If we run Grover’s algorithm for a random number of iterations, if iterations are sufficiently large, we have
a % chance of getting a marked state after measurement.

Then another method of getting a marked state in O(y/M/N) time is to run Grover’s for a random number
N between 5 and 10 iterations, then a random number between 10 and 20 iterations, then a random number

between 20 and 40 iterations, then a random number between 40 and 80, and so on. We are likely to get a
marked state after roughly /N/M iterations.
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27 November 12th, 2021

Today, we will discuss the lower bound on the quantum search algorithm (Grover’s algorithm).

We recall Gover’s algorithm. We want to know how many times the algorithm needs to call the Grover
oracle. The original Grover’s algorithm can return marked |x) in O(vV N) steps.

The idea is to start start in state |¢)) and assume another program computes
[V5) = UkOgUp—10q -+ - U10z|¢),  [¢hi) = UpUk—1 -+ Us|9h) (204)

where O, is Grover’s oracle. We can define, where |¢7) is the final state after the program with Oy (|¢x)
corresponds to O, = I, no marked states),

Dy, = Z 165) — [ (205)

At the end, we have |¢) = |z), so intuitively, at the end of the program, Dy ~ N. We will also show
that Dy cannot grow faster than O(k?). We also note that Dy is intuitively minimized when |¢}) =

11 1
(x/iﬁ’ﬁ"” ’ﬁ)'
There is a theorem that says we can assume all measurements at the end of a quantum algorithm.

Proof. We will proceed by induction. We get Dy in terms of Dy. We have

Dip1 =Y Ukt102[9F) = Uksa [ =D 102|08) — [ = D 102 [08) — Oultbi) + Oultbi) — I}
(206)

We will use the fact that

16) = DOI® < [{@ld) — (xIx)| + 21| < [(8le) + (xx)] + 2l [1x)]- (207)
Then

Diar < 3104 108) = Oul)® + 32100 = DI * +2 3 10, (WD) )l 1(0x = D). (208)

The first term is

Zl\wk )|* = Dy. (209)
The second term is
> 102 — D). (210)
We note
Oy — I =2z){z| = Y |(O; = I)|¢n)] —4Z||x ) (alyn)] _4Z|x|¢k —4 (211)

The third term is the tricky one. We will use the Cauchy-Schwarz inequality |v - w| < ||v]|||w]|. We have

23 1) = [ek) (02 = T) [9r)] < 2\/Z||¢;§> - ¢k>2\/2|<0x — 1) [pw)|* < 2¢/DyVA = 4y/Dy.

(212)
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We can collect terms and obtain

2 2
Dis1 < Dy +4y/Dy +4 — (\/D,m) < (\/D,c T 2) — /Drs1 < VD +2. (213)
Then if we consider Dy = 0 because |¢F) = |1bg) and

V/Dyry1 <2(k+1) = Dy < 4(k+1)% (214)

Then
Dena = Z ||w:nd> - |¢end>|2 = Z Hl‘> - |¢end>|2 = Z (<$| - <¢end|) (|J?> - ‘wend»
=Y 12— 2(Wenal®)| = D121 =2 [(Yenalz)| (215)

We will use Cauchy-Schwarz again! Consider

S (Wenal)| < /S [Wena )P/ S 12 =1- VN (216)

and then
Dena > 2N — 2V/N. (217)

Then we note that 2N < Depg < 4k where k is the number of oracle calls = k > %\/ﬁ . Then this is
the lower bound for the number of searches using Grover’s algorithm. O

27.1 Quantum error correction preview
Suppose we have a qubit |1) that cannot be cloned. We can take the qubit and encode it in five single-qubit
pieces |¢;),¢ € [1,5], which are all entangled with each other.

We then send the |¢;) through a noisy channel. An adversary then comes and makes some arbitrary error
(deletion, measurement, applying a unitary) one of these. The idea is that the receiver can take the four
that are not deleted and recover |¢) perfectly.

Philosophers may wonder where the quantum information is in deletion step. We note that the information
is not encoded in the redundancy of states, but it is also not encoded in any singular |¢;).

This is the quantum analog of classical error-correcting code.
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28 November 15th, 2021

28.1 Background

in 1948, Claude Shannon published a paper that started information theory. He showed that noisy communi-
cation channels have a capacity and derived Shannon’s formula for the capacity of a channel. He showed that
an algorithm existed that could transmit information at nearly the channel capacity, but it was exponential
in time to implement.

Two years after publication, Richard Hamming discovered the first error-correcting codes. Hamming codes
are linear codes and have nice properties.

In a bit more detail, the Hamming codes take a four-bit message, encode it into a seven-bit message in a
way such that if one of the seven bits is wrong, we can recover the original four bits. The encoding is done
by multiplying a message m by a generator matrix G where

100 0 1 11
01 000 11
G = 001 01 01 (218)
0 00O 1 1 10
Decoding is done with matrix H with
[1 1 1]
0 1 1
1 01
H=1]1 10 (219)
1 00
0 1 0
0 0 1]
where GH = 0. If there is a one-bit error in transmission r, we have
r=mG+e = rH=mGH+eH =¢eH — rH =¢H (220)

is independent of message and know what the error is. eH is the syndrome of the error. Computing e from
eH is computationally difficult.

Before Shannon, people used repetition codes where we repeat the bit k times. The encoding matrix in
general is

G=[1 11 - 1]. (221)

Note. For a three-bit code, let p be the probability we have an error in one bit and 1 — p probability of
being correct. Then there will be an error in encoding if and only if at least two encoding bits have errors.
The probability is 3p?(1 — p) + p® ~ 3p? for p small.

We will first discuss the quantum repetition code, nine-qubit codes that can correct one error, and finally
discuss the quantum analog of the Hamming codes.
28.2 Quantum repetition code

It is impossible to clone a qubit, but we can consider a unitary
U10)]00) = |000), U|1)[11) = [111) (222)
which is a three-qubit code that protects against bit-flip errors. The code maps
al0) 4+ B]1) — «|000) + B|111). (223)
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This code corrects one-bit flip (a o, error). We measure which bit is different. We do this by projecting the
three qubits onto one of the following four subspaces
|000)(000] + |111)(111|
|100)(100] + |011)(011]
|010)(010] + |101)(101|
|001)(001| + [110)(110|

Once we measure which subspace we are in, we can correct the error. For example, if we project into the
third subspace, we apply o, to the second qubit.

The encoding and decoding circuits are given by

a0) +B11) a|0) + B|1)
0) —& a [000) + 8]111) «000) 4 B [111) < |0)
0) ————b— —>b—|0)
(a) Encoding circuit (b) Decoding circuit

Moreover, the error correction circuit is given by

10) ——b [~
[~

Figure 11: Quantum error correction circuit

If the two measurements (syndrome bits) are |0), we know that |1) was in the code subspace. If we measure
[1)]0), the second qubit is different. If we measure |0)|1), the third qubit is different and if we measure |1)|1),
the first qubit is different. The probability of a bit-flip error on the encoded qubit is still ~ 3p? for small p.

We have a correspondence

|000), [111) — |0)]0), |001), [110) — |0)|1), |100), |011) — |1)]0), |010), [101) — |1)]|1). (228)

28.2.1 Phase-flip errors

We can consider phase-flip errors (a o, error). We can call an encoded |0),|1) a logical |0), |1), represented
by

0,) =1000),  |17) = [111) (229)

If we apply a o, to any three encoding qubits, we take |0r) — [0z),|1r) — —|1z). Then if the probability
of a phase error on a single qubit is p, the probably for a phase error on an encoded qubit is 3p + p3 ~ 3p
for small p. Thus, this three-qubit encoding decreases the bit flip error but increases the phase flip error.
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On the other hand, we recall that Hadamards take o, <> 0, and we have a code that changes the role of a
bit-flip and phase-flip error. The code is

+) = l++H), === (230)

or equivalently,
1 1
|0) — 3 (]000) 4 |011) + |101) + [110)), 1) — 3 (]100) 4 |010) + |001) + |111)) (231)

Note that we have two codes and we can either protect against on bit-flip errors and make phase-flip errors
more likely or the other way around. There is a way to get around this problem.

We can concatenate the two codes. This comes from classical coding theory. We can encode using one code
and then encode using the other. The convention is to first apply the phase correction code and then the
bit error correction code to each of the qubits. Note that this may be because Peter Shor did this in his first
paper. It is quite arbitrary.

This works by

(1000) + [111)*?, =) = | = =) = % (/000) — [111))** (232)

[+) = |+ ++) = !
V8
Note that if we have a bit-flip error, it’s corrected by the inner code. If we have a phase-flip error, the inner

code turns this into a phase-flip on the logical qubits of the inner code, which gets corrected by the outer
code. Then o,,0, can be corrected.

oy = 1050, errors can similarly be corrected.

Claim. The nine-qubit code given in this lecture can correct more general one-qubit errors. We will see this
in the next lecture.
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29 November 17th, 2021

Announcements
e Problem set 9 released this weekend due Friday after the holiday

We will continue our discussion of the nine-qubit code.

29.1 Review

Last time, we started with the three-qubit bit flip correcting code, which takes
|0y — 1000}, [1) — |111). (233)

Note that this is not a cloning transformation. Noting that Ho,H = o,, we get a three-qubit phase-flip
correcting code

) =l++4H), == (234)

Written in the {|0), |1)} basis, this is

0) — % (1000) + [011) 4+ [101) + [110)), |1} — % (J001) + [010) + [100) + [111)).  (235)

A bit-flip error o, on any qubit results in a bit-flip on the encoded state. We call encoded |0),|1) logical
0L), [1L)-

Moreover, we can correct phase-flip o, errors as well because

IOL>7 0§1)|0L>7 0'22)|0L>7 0§3)|0L>7 (236)
|1L>’ Ogl)|1L>) 022)|1L>’ 023)|1L> (237)

are all orthogonal where agj ) denotes a o, error on qubit j.

We can correct the state by projecting onto one of the four subspaces
00) O]+ [12)(1e],  oD(00)(0L]oY) + oD [11) (1|0 (238)

for j =1,2,3. We combined the codes by concatenating them. We encode using phase-flip and then bit-flip:

) = [9)%* = —= (J000) + [111))*%, | =) = [=)® = —= (j000) — [111))®" (239)

1 1
V8 V8
which is the nine-qubit code. We note this code corrects any Pauli error on any qubit. o, are corrected by
bit-flipping and o, are corrected by phase-error correcting code. o, = ¢0,0, and so we can correct these as
well.

29.2 Arbitrary errors

We will now consider arbitrary unitary errors (e.g. a measurement on qubits or a more general type of
quantum transformation). We claim that this nine-qubit code corrects all of these errors.

Theorem 29.1. Any quantum error-correcting code which corrects t or fewer Pauli errors (o4, 0,0, errors)
on a subset of t or fewer qubits will also correct an arbitrary quantum operation which is applied to at most
t qubits.

61



The nine-qubit code corrects any arbitrary single-qubit error follows from the theorem with ¢ = 1.

We will first consider an example on the three-qubit phase-flip error correcting code.

Example 29.2. Consider «|0) 4+ |1) encoded in the three-qubit phase-flip correcting code:

%a (]000) 4 [011) + [101) + [110)) + %B (|001) + [010) 4 [100) + [111)). (240)
We want to consider what happens when we apply {eow 699} to the second qubit. We get
%e—”@ («|000) + |101) 4 3]001) + 5]100)) + %e” (a|011) + [110) + 3|010) + S8]111)). (241)
We can use the identities €’ = cos + isinf, e~ * = cosf — isinf. Then the above simplifies to
cos 0 (a|0L) + B|1L)) —isinfo® (a|0L) 4+ B]1L)). (242)

When we make a measurement, we get that there is no error with probability cos?# and a ¢, in the second
qubit with probability sin?@. When we correct the o, error on the second qubit, we recover the original
state. This is because

672'0 0 .
0 o] = (cos0)I — i(sinf)o. (243)
Then for a general error we have
a pl_1 Loz 1 Lig
Lyé]_2@+5ﬂ+2m 0)0. + (B +7)0. +5(8 =)o, (244)

Then if we have one error on any qubit, there is some nonzero probability of finding it, e.g. square amplitudes.

Example 29.3. Suppose we measure qubit 5 in the {|+),|—)} basis and measured |—). This corresponds
to projection matrix

=5 | 7] = su-e (215)

If we apply error correction, we will get I with probability % and o, with probability %

Example 29.4 (Small error on all qubits). We will now consider a small error on all qubits

e—27ri/200 0 T o T ]
0 p2mi/200 | = COS m[ — isin 75500 & 0.9997 — i(0.03)0 . (246)
Because this is an error on all qubits, we have
(0.9997 — 0.03i0")" = 0.999"T = 0.03i Y _o{” +0.009) > 0Pl (1 = 5;5) + -+ (247)
i=1 i=1 j=1

So most of the amplitude is in cases with errors on < g5 qubits. So if your error correcting code corrects
505 Phase-flip errors, we have a small chance of error.

29.2.1 Some formalism
The more formal proof of the above theorem. We will prove that if an error-correcting code can correct

errors described by matrices M7, My, M3, then it can correct errors described by a linear combination of
these. Then we show that any error on ¢ qubits is a linear combination of Pauli errors on ¢ qubits.
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The first step comes from linearity of quantum mechanics. If we consider an error correcting circuit, we can
apply the principle of delayed measurement to postpone measurements until the end. Instead of measuring
error classically and applying Pauli matrices, we measure the error coherently and use controlled Pauli gates
to correct erors. This gives us a unitary

M;[4)|0%) = |)| D) (248)

where |D;) a description of the error. Then if we have an error F' =), M;, we can correct it via
Fli)|0¥) = aiMifw))|0%) = [9) Y ol Di). (249)
i i

This shows that error correction measures the error without measuring the encoded quantum state. This lets
us correct the error without measuring the quantum state.

Now consider a small error on every qubit. Let there be n qubits where the error on the ith qubit is

Fr=(1—e)I+ 05508 + 6,00 +6. 00 (250)
We can expand the produce [[, F;. Most of the amplitude of the product will be in terms with few Pauli
errors, so all we need to do is correct any tensor product of < 155 Pauli errors and if the ¢’s are small enough,

_n_

there will be Pauli errors on fewer than 15 qubits. The probability that you make an error that is too large
to be corrected is very small.
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30 November 19th, 2021

Today, we will discuss the seven-qubit Hamming code. The Hamming code is the simplest CSS code.

30.1 Classical Hamming code

The codewords of the Hamming code are the binary linear combination of the generator matrix

0001111
0110011

G= 101 0101 (251)
1111111

Note that this is different from the generator matrix we gave in lecture 28.

The Hamming code encodes four bits into seven bits. We take a four-bit message m to get a codeword
c=mG. (252)

The Hamming code is the simplest non-trivial example of linear codes. In linear codes, codewords are binary
linear combinations of some generator G. A generalization of these, called stabilizer codes, exist, but we will
not discuss these today.

30.1.1 Correcting errors

We correct errors using the parity check matrix H, which is a generator matrix for the dual space of the
code. The dual space of a vector space V is

Vi={w:w v=0wecV} (253)
We note that in binary vector spaces, the dual can overlap with the dual. It is still true, however, that
dimV 4+ dim V+ = n.
The Hamming code corrects one error because the minimum non-zero codeword has Hamming weight 3.

Definition 30.1 (Hamming weight and distance). The Hamming weight of a codeword is the number of
non-zero coordinates of a codeword. For binary codewords, this is the number of 1’s.

The Hamming distance dg(c1,c2) is the Hamming weight of ¢; — ¢o, or the number of coordinates where
c1, co differ.

4

Theorem 30.2. Suppose that the minimum non-zero weight of a code is d. The code can correct t = [ %5

errors and detect d — 1 errors.

Proof. We will show that a word w cannot be within ¢ of two different codewords ¢y, co. Suppose it is, then

-1
dp(er,e2) <dg(er,w) +dp(w,c2) <2 {%J <d-1 (254)

but ¢; — ¢o is a codeword = dp(c1,c2) > d, a contradiction. So for any word, there is at most one
codeword within ¢ of it = if a codeword has ¢ or fewer errors, we can correct it to the unique codeword
within Hamming distance .

Moreover, if a codeword has fewer than d — 1 errors, then the errors cannot take it to another codeword. We
can detect that there is an error! O
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The parity check matrix for the Hamming code is HT where

0 00 1 111
H=|0 11 0 0 1 1f. (255)
1 01 0 1 0 1
The parity check matrix is often written as a 7 x 3 instead of a 3 X 7 matrix, but this representation is useful

for the quantum Hamming code.

We note that the rows of H are the same as the first three rows of G. We have the property GH? = 0,
which is important. Then we note that the code C*+ c C.

The Hamming code is called a (7,4,3) code because it maps 4 bits into 3 bits with minimum weight 3. A
code whose generator matrix is H is a (7,3,4) code.

Claim. Every non-zero codeword has Hamming weight 4.

The Hamming code can correct one error, for example let the error be e = [0 01 0 0 O O}. Suppose
we receive an encoded message with error given by

r=mG +e. (256)
We can correct the message by multiplying by H”:
rHT = (mG +e)H" = eHT (257)

where eH” is called the syndrome. Because e contains a single 1 in the kth position, eH is the kth row of
HT.

Example 30.3 (Hamming codes). Suppose we receive a noisy codeword r =1 0 0 1 0 1 0]. We
can calculate

rH" =[0 1 1] =eH" (258)

which is the third row of HT. Thus, the third bit of the codeword has an error. The correct codeword is
[1 01 1 0 1 O], where the third bit is corrected. We can use linear algebra to show that this is the
encoding of the message [1 0 1 O].

We note that H C H- = G.

Definition 30.4 (Weakly self-dual codes). A code C is weakly self-dual if C C C+. These codes are
important for building quantum error-correcting codes.

30.2 Quantum Hamming code

The quantum Hamming code encodes two bits into one bit. The logical |0) is a superposition of all eight
codewords in H

1
02) = == > Ie) (259)
ceH

and the logical [1) is the superposition of the eight codewords that are in G and not H. These are codewords

of H @ |1111111):

1

1) = — c® 1111111). 260
=75 3| ) (20)

This corrects an arbitrary one-bit error. We will show that this corrects a single o,,, 0, error. Moreover, this
code treats these two separately, so we can also correct a o,.
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30.2.1 Bit-flip error

The state is a superposition of elements in the classical Hamming code. We can apply the classical Hamming
error correction to each element to correct a single bit-flip error. We can compute the syndrome. If b; be
the ith bit. The syndrome is given by

[bs ®bs @b Dbr by Dby Dbe by by @bz ®bs byl (261)

The circuit is

[¥) 4
0) —b—D—— o |
|0) Co—0—0— @l |
|0) 0 |

Figure 12: Quantum Hamming syndrome computation circuit
We can then determine the error and correct it. This can be done classically.

30.2.2 Phase-flip error

Recall that the Hadamard makes bit-flip to phase-flip errors. Then we just need to see what happens when
we apply a Hadamard to every qubit of the code. It turns out that we get the same quantum code back!
Then the circuit for measuring the syndrome for phase-flips is the same as bit-flips except we put seven
Hadamard gates on the qubits in the quantum code at the front of the circuit and seven more at the back.

More formally, let us consider applying H®7 to the quantum code. We have
02) = ) = H®|0r) = )" y). (262)
P> TP

If y € G, because all elements of G are orthogonal to all elements in H, the phases are +1 and the sum
evaluates to 8ly). If y ¢ G, half the phases are —1 and the other half are +1. Then

H®T|0L) = Zly Z|y>+ >y :7(\0L>+\1L>) (263)

yeH yeG\H

and

H®"[1.) = 7\/7— Z Z D*y). (264)

z€G\H yeZ}
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If y ¢ G, the sum vanishes. If y € H, the sum is 8|y) and if y € G\ H, the sum is —8|y). this is because the
inner produce of two vectors in G\ H is —1. Then

1
V2
Then H®7|0r), H®"|11) are states in the quantum Hamming code, and bit-flip errors can be corrected by

the error correction procedure. This means phase-flip errors can be corrected by applying H®7, applying
bit-flip error correction, and applying H®” again.

H¥11) = —= (|0¢) = [11)) - (265)

30.3 Applying logical Pauli matrices

We can apply a logical o, and logical o,. For a logical o,, we note that we can turn any codewords in H
into a codeworde in G\ H and vice versa by adding |1111111), so the corresponding operation to [01) is ¢®7.

Moreover, applying a logical o, is just applying a ¢®7. This is because ¢®7 applies a +1 phase to any |y)
for y € H and a —1 phase to any |y) for y € G\ H.
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31 November 22nd, 2021

Today, we will discuss more Hamming codes and CSS codes.

31.0.1 Review

We reviewed the Hamming code from last lecture. An important detail we may have missed is that a classical
binary linear code is a subspace of Zj.

31.1 Quantum Calderbank—Shor—Steane (CSS) codes

A CSS code is a quantum error-correcting code that is derived from two classical codes C7, Cy with Cy C CY.
We call this code CSS(Cy : Cs).

Claim (CSS error correction). If Cy can correct ¢ errors and Cj, the dual code to Cs, can correct to errors,
then CSS(C : Cs) can correct t1 bit-flip errors and t5 phase-flip errors.

Note. We can consider a quantum error-correcting code to be a collection of codewords or the subspace
generated by these words.

We will first discuss some terms from classical error correcting codes.

Definition 31.1 (Cosets). If Cy C C4, a coset of Cy in Cy is the set of vectors
x+Cy={y:y=x+c,ceCy} (266)

for some x € Cy. Two cosets x1 + Co and x5 + Cy are either equal or disjoint. They form a partition of the

space Cy. Every x € C is contained in some coset. The number of cosets is ‘% ‘

Example 31.2 (Hamming code cosets). In the Hamming code, there are two cosets of H in G, given by

H,  H-+|[1111111). (267)

Definition 31.3 (CSS(C; : C3)). Let C1,C5 be two n-bit classical codes with Cy C C;. The CSS code
CSS(C4 : Cy) is the code with codewords
1

|z + Cs) = W Z |z +c) (268)
ceCs

for each coset x4+ C5. The codewords are associated with cosets of C5 in C. Thus, the number of codewords

is the number of cosets of Cy in Cy, which is g—; . The dimension of the code subspace is

dim CSS(C} : Cq) = log, :gll =dim C; — dim Cs. (269)
2

We will now show that CSS(Cy : Cq) corrects t1 bit-flip errors. There is a classical error-correction procedure
that will correct ¢; or fewer errors in any codeword c; of C;. The codewords of CSS(Cy : Cs) are a
superposition of quantum states |z 4 ¢), each of which is a codeword of C;. Applying the classical algorithm
in quantum superposition will correct up to t; bit-flip errors in the quantum code.

The dual code corrects t5 phase errors. We recall the the dual W of vector space V is
Wt={zeV:z -w=0WNweW} (270)

Consider applying the Hadamard transform to codewords |z 4+ C3). We get superpositions of the codewords
of the code CSS(Cy : Cf).
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Note. We note Cy C C; = any vector perpendicular to everything in C; is perpendicular to everything
in Cy, = Cif CCf and dimC{- = n — dim Cy,dim Cy = n — dim Cy. We have

dim CSS(C; : Cy) = dim CSS(Cy : CF). (271)
Now we consider
1
Qn — ®n (cz+z) y
H |3§‘+CQ> ,/2d1ng ; |02 +.73> 1/2d1m02 WAL ygz:" ; |y>
Cc2 2 Cc2 2

L 1 x-y _1\c2'y
= Ve v VT X U en)

ca€Co

Now if y ¢ C3-, we have

1
Z (71)c2.y _ |02‘v Yy e CQL (273)
c2€C2 0, Yy ¢ 02

If y € C5, all elements of the sum are 1 and we get |Cz|. If not there is some d € Cy : d -y = 1 and we can
pair elements of Cs into (ca,ca + d) where the sum of each pair is 0, so the whole sum is 0. Thus we have

H®"|z + Ca) = —1)"y). (274)

We are almost done!
Claim. If y;,y2 in the same coset of C{- in Cy-, then (—1)*¥1 = (—1)"¥2 because y; —y2 € O,z € C; =
z-(y1 —y2) =0.

Let R be a set of representatives of cosets of Ci- in C3. There is one element of each coset in R. We can
group the sum over y above into elements in the representation. Then

" 2d1mC w
HE" |z + Cy) = ST CE > (=1)™V]y +CF) (275)
yeR

which shows that the Hadamard transform of a codeword in CSS(C} : Cs) is a superposition of codewords
in CSS(Cy : Cih) as desired.

31.2 Shifting a code

We can take a CSS code and shift it in bit space or phase space. A codeword for a code shifted by s in bit
space is

|z + Cs) = ‘C|1/2Z|s+x+c (276)
ceCs

If s € Cy, nothing changes. If s € Cy, this permutes the codewords. If s ¢ C;, we get a new code! It still
corrects the same number of errors.

A codeword for a code shifted by ¢ in phase space is

v+ Co) =15, |1/2 > (=1 ). (277)
ceCy
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We can also shift in phase space and bit space. The ordering here makes a difference. We have

1 (z+c
ceCs

The shifted error correcting codes correct the same number of errors as unshifted ones.

Note. An important fact to know for the proof of security of quantum key distribution is that if you shift
both the bit space and phase space by a random vector, and average over resulting codes, we get a uniform
distribution with density matrix Ion.
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32 November 24th, 2021

Today, we will discuss more Bell-type quantum “paradoxes."

We will begin witht he Mermin-Peres magic square game and then go into the Kochen-Specker theorem.

32.1 Mermin-Peres magic square game

We have the following game. Consider Alice and Bob, players who are not allowed to communicate during
the game. The play a game on a tic-tac-toe board. There is a referee that gives both Alice and Bob row and
column assignments. They must then fill their respective row/column with +/—. Alice and Bob win if they
agree at an intersection. Alice has an even number of — and Bob has an odd number of —.

Note. The product of Alice’s signs are positive and Bob’s signs are negative.

Example 32.1 (Magic square game). Consider the instructions {Alice: row 3, Bob: column 1} from the
referee. Then the winning play is

Table 1: Winning play for Alice, Bob.

There does not exist a deterministic classical winning strategy for Alice and Bob. If there was a solution,
there would be a filling of the grid with an odd number of — in each column and an even number of — in
each row. We cannot have this because of the parity of the grid. The maximum probability that Alice, Bob
win is %. The deterministic strategy is given by

+ 1+
+ 1+

]+

Table 2: Winning strategy for Alice, Bob.

where they win if the referee asks them for {Alice: row 3, Bob: column 3}.

32.1.1 Quantum mechanical strategy

If Alice and Bob share two EPR pairs
1
V2

we can consider the following matrix

S

(100)aB + [11)aB) ® %

(100)ap + [11)aB) (279)

I®o, o, 1 0, R0,
o, ®1 I® o, Oy R 0y
—0, R0, | =0, R0, | 0y R0y

Table 3: Quantum mechanical strategy.

where each entry is a Hamiltonian, or a measurement operator.
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If Alice gets row i, she measures her qubits with the three observables in the row. Ditto for Bob for the
columns.

We require three things.
Commutativity. It is easy to check that all operators in each row (and in each column) commute. For
example

(0. ®0.)(0, R0z) =020, R0,0, =—0,0, =00, = (0, ®0;)(0, ®0,). (280)

This means that Alice and Bob can simultaneously measure the three observables.
Identity. We also check that the product of observables in each row is I and the product of observables in
each column is —I. In the third row, we have

00,0y @ 0,00y = —ioi ® iaz =1 (281)
where we have used 0,0, = —ioy, 0.0, = 0,. This means that when we take the three eigenvalues given by
the observables in each row, we will always get 1.

Parity. We finally require that Alice and Bob get the same result in each cell after measurement. We can
verify that the measurement results are guaranteed to multiply out to +1 for Alice and —1 for Bob.

32.2 Kochen-Specker theorem

This theorem relates to a hidden variable quantum mechanics theory.

We recall the spins of a spin-1 particle.

1 0 0 L [r o1 ;[0 =i 0]
J.,=10 0 0|, J,=—41]0 0 0|, J,=—%1]i 0 -—il, (282)

00 -1 V211 0 1 200 i o

1 00 100 [0 —1]
J2=10 0 0, 0 2 0 Jj:5 0 2 0]. (283)

00 1 00 1 -1 0 1|

Let us suppose that there were hidden variables and the spin J2 was determined beforehand for every axis.
Note that J2 = {0,1}. Then there exists a coloring of the sphere with red and green that any orthogonal
triplet has exactly one green. It turns out they found a set of 115 axes and proved that you cannot color the
axes in this way.

The vectors are of the form v = (+1,=+1,0), (+1,0,0), (v/2, %1, £1), (v/2,%+1,0) which correspond to points
on a cube. The coloring can be found in the lecture recording.
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33 November 29th, 2021

Today, we will discuss the BB84 key distribution protocol, based on quantum error-correcting codes. It was
invented by Charlie Bennett and Gilles Brassard in 1984. We will then prove its security using CSS QECC.

33.0.1 Key distribution protocols

The basic idea of a key distribution protocol is that there are two participants, Alice and Bob that want to
agree on a secret key that an eavesdropper Eve does not know. We assume that Alice and Bob start the
protocol without secret information and must agree on a secret key using a public channel. Classically, we
need to base the protocol on a hard problem that Eve cannot solve. In quantum mechanics, however, we do
not need to make an hardness assumptions since security comes from the laws of quantum mechanics.

There are some assumptions we need to make to protect against a man-in-the-middle attack. Note that
there is no identification information. If Eve inserts herself in the channel, she can pretend to be Bob and
Alice to Alice and Bob, respectively. We will assume that Alice and Bob have a classical channel that is not
spoofable — Eve cannot take over the channel and pretend to be Bob. We will also assume that Alice and
Bob have a quantum channel that Eve is allowed to do anything to (consistent with laws of physics).

Because Eve can simply cut this channel, we require that it is unlikely that Alice and Bob think they have
shared the secret key while Eve has more than an exponentially small amount of information about the
secret key.

The advantage of a quantum key distribution over a classical key distribution is that we don’t rely on some
hard problem. The disadvantage is that we need a quantum channel between two participants (like an optical
fiber).

33.1 BB84 protocol

The protocol is as follows:

Alice sends Bob a sequence of qubits in one of four states |0}, [1),|+),|—). Consider the sequence
Bob measures the sequence in a random basis 0/1 or +/—.

Alice sends Bob the basis and Bob discards the qubits for which the measurement results do not match.
Alice and Bob choose a random sample of the qubits to use to check whether they agree. If they do,
they know Eve could not have been measuring many qubits. They then use the remaining qubits into
a secret key (like mapping |0), |+) — 0,|1),|—) — 1).

b

Example 33.1 (BB84 protocol). We can consider the following protocol applied to a sequence of qubits

Alice prepares o L+ 1) =) =) 1) 10y [0)
Bob measures o/t o/1 o0/1 +/- +/- 0/1 +/— 0/1 +/- 0/1 0/1
and gets (O O I ) N R £ A O R e N VDR & B (OB (1)
Alice’s basis o/1r o/1 +/- +4/- 01 +/—- +/—- 0/1 0/1 0/1 0/1
places they agree |0)  |1) [+) |—) [1) [0)  ]0)
check qubits ? ? ?

Alice 1 + 0

Bob 1 + 0

secret key 0 1 1 0

Table 4: BB84 protocol example.

This protocol works because if Eve measures a qubit, she does not know which basis to measure in. If she
chooses the wrong basis, she will disturb the quantum state and Alice and Bob will notice that their check
bits disagree.
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If the channel is noisy, Alice and Bob’s string of bits will disagree. Suppose Alice and Bob have length
m strings a, b respectively. Because they tested their bits, they expect em of their bits to differ, where €
small. Alice can choose an error correcting code C length m that corrects €’m bits, € > €. So accounting for
random fluctuations in noise, the number of places where Alice and Bob’s bits differ is less than ¢'m with
high probability. Alice chooses a random codeword ¢ € C' and sends

a®ec (284)

to Bob. Bob then takes this message and subtracts b from it to get a @ b @ c. This is a string that differs
from c in fewer than €'m positions, so Bob can also apply error correction and get c. Alice and Bob can then
share c.

It is possible that Eve has some information about ¢. To fix this, then, Alice and Bob choose a hash function
that maps m bits into £ < m bits.

33.2 Adapted Lo-Chao protocol

We will now give a protocol where the security proof is relatively simple. Note in the original BB84 protocol,
Bob needs quantum memory to store all qubits he receives and is not practical.

The idea behind this protocol is that if Alice and Bob share perfect EPR pairs, then measuring them in the
0/1 basis will give them a secret key. Eve can never determine the outcomes of measurements because Alice
and Bob have perfect entanglement.

The protocol is as follows:

1. Alice prepares n EPR pairs

Alice chooses a CSS code CSS(C : C3) and a translate of it by s in bit space and ¢ in phase space.

3. Alice encodes half of each EPR pair with this code, randomly intersperses test bits which are equally
likely to be one of four bases |0),]1),|+),|—) and sends this string to Bob.

4. Bob puts everything into quantum memory.

5. Alice announces the code and strings s, ¢, which bits were test bits, which bits were code bits, and the
values of the test bits.

6. Bob checks the test bits to determine the error rate. He then decodes the EPR pairs, and Alice and
Bob measure EPR pair in the 0/1 basis to obtains a secret key.

N

Note that because Alice sends a random translate of CSS(Cy : C3), the test qubits are equally likely to be
in any the four states, the density matrix Eve sees is completely random, i.e. is the identity matrix, so Eve
cannot tell which qubits are the code qubits and which qubits are the test qubits.

Moreover, because the rate of noise on the test bits is sufficiently low, the probability the CSS code does not
transmit the correct state is €, where € small. Then the state Alice and Bob share after transmission is

V1 =€) + Vel E) (285)

where |¢) is the EPR pair and |E) an arbitrary error state. Then Eve has an exponentially small amount of
information about the key after measurement.

33.3 Equivalence of protocols

We can assume that Alice measures her half of the EPR pairs before she encodes the quantum state. Thus
we can assume that the quantum state that she sends is a random string of n classical bits which is encoded

in CSS(Cl : CQ)

When Alice encodes a random string of bits to encode, she is choosing a random coset = + C5 and encoding
it. Choosing a random coset z is the same as choosing a random bit string y and taking the coset y + Cs.
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In the shifted CSS code, it looks like

(1) 4y o). (286)

\ |02| c2€C2

For the secret key, Bob needs to find the coset C5 that this belongs to. He can find this coset by measuring
in the 0/1 basis and subtract s to get y + co. Bob doesn’t need ¢ to find the coset so we can assume Alice
never sends him ¢. Then the density matrix of her message is

ﬁ ( > (—1)t'(y+°‘2)|s+y+C2>> ( > (—1)t'<y+02><s+y+cz|>

caeCs c2€Cy
1

:@ Z |s+y+co){s+y+ca| (287)

c2€C2

which is the same as Alice taking a random ¢, and adding it to s + y. Because the channel may be noisy,
Bob actually gets s + y + c3 + e where e some error. He needs to subtract s and apply classical decoding
procedure to get y + c».

We can now compare the protocols. In BB84, Alice sends Bob a and Bob receives b = a+e. Alice then sends
Bob a + ¢; on the classical channel and Bob subtracts the quantities to obtain ¢; + e. Bob then decodes
using QECC and obtains ¢; € Cf.

In Lo-Chau, Alice sends Bob s+ y + ¢o where y 4 co € C7. Bob receives s+ y + co + e. Alice then sends bob
s. Bob subtracts and obtains y + co + e. Bob then uses QECC and obtains y + ¢o € Cf.

Thus BB84 is secure because these two protocols are equivalent.
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