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1 Regular Languages

1.1 Key Definitions

Definition 1.1. A finite automaton is a 5-tuple (Q,Σ, δ, q0, F ) where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ→ Q is the transition function,
4. q0 is the start state, and
5. F ⊆ Q is the set of accept states.

Definition 1.2. If A is the set of all strings a machine M accepts, we say A is the language of M and
write L(M) = A. We say M recognizes A or M accepts A. The empty language is the language of
no strings, denoted ∅.

Definition 1.3. A language is called a regular language if some finite automaton recognizes it.

Definition 1.4. For languages A,B, the regular operations are:

Union: A ∪B : {x : x ∈ A or x ∈ B}
Concatenation: A ◦B : {xy : x ∈ A and y ∈ B}
Star: A∗ = {x1x2 . . . xk : k ≥ 0 and each xi ∈ A}.

Definition 1.5. A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F ) where all
are the same as in the deterministic case except

δ : Q× Σε → P(Q), Σε = Σ ∪ {ε}

and P(Q) the power set of Q.

Definition 1.6. Two machines M1,M2 are equivalent if they recognize the same language.

Definition 1.7. R is a regular expression if R is

1. a for some a ∈ Σ,
2. ε,
3. ∅,
4. R1 ∪R2, R1 ◦R2, or R∗1 for R1, R2 regular expressions.

Definition 1.8. A generalized nondeterministic finite automaton (GNFA) is a 5-tuple, (Q,Σ, δ, qstart, qaccept)
where all else same as DFA, NFA, transition function given by

δ : (Q− {qaccept)× (Q− {qstart)→ R.

1.2 Key Results

Theorem 1.9. Class of regular languages closed under union operation.

Proof. Consider machines that recognize A1, A2 and construct M recognizing A1 ∪ A2 with Q = Q1 ×
Q2,Σ = Σ1 ∪ Σ2, δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)), q0 = (q1, q2), F = (F1 × Q2) ∪ (Q1 × F2), keeping
track of pairs of states.
Faster: Take two NFAs that recognize A1, A2, construct N recognizing A1 ∪ A2 by creating new start
state and sending ε-transitions to start states of N1, N2.

Theorem 1.10. Every NFA has an equivalent DFA.

Proof. Massage states and transition function of an NFA N into the states and transition function of
DFA M using sets.
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Corollary 1.11. A language is regular ⇐⇒ some NFA recognizes it.

Theorem 1.12. Class of regular languages closed under concatenation.

Proof. Use nondeterminism to guess where to make split by connecting accepting states of N1 recognizing
A1 to start state of N2 recognizing A2 with ε-transitions.

Theorem 1.13. The class of regular languages is closed under the star operation.

Proof. From N1 recognizing A1, create new start state q0, connect to old start state via ε-transition, and
connect all accepting states to old start state via ε-transitions.

Theorem 1.14. A language is regular ⇐⇒ some regular expression describes it.

Proof. (⇐=) Convert R into NFA N . (=⇒) Convert DFA into GNFA into regular expression. The
conversions are done by ripping out intermediate state and repairing all connections.

Theorem 1.15 (Pumping lemma). If A a regular language, exists p (pumping length) where if s ∈
A, |s| ≥ p, s can be divided into three pieces s = xyz:

1. ∀i ≥ 0, xyiz ∈ A
2. |y| > 0,
3. |xy| ≤ p.

1.3 Proof Concepts and Examples

Example 1.16. Creating DFAs, NFAs to show languages regular, as if you are machine.

Example 1.17. Use ε-transitions to prove closure properties and build NFAs.

Example 1.18. Use pumping lemma to prove language nonregular:
Let B = {0n1n : n ≥ 0}. WTS B nonregular. Consider string 0p1p ∈ B. Use pumping lemma, s = xyz.
Three cases, y contains only 0s or 1s. After pumped, there will be unequal amount. If y has both 0, 1,
after pumping, will be out of order, so a contradiction =⇒ B nonregular.

1.4 Problem Set Results

Problem 1.19. Class of regular languages closed under complement.

Proof. Swap accept and nonaccept states of a DFA M .

Problem 1.20. Class of regular languages closed under reversal. For any language A, AR = {wR : w ∈
A}. A regular =⇒ AR regular.

Problem 1.21. Class of nonregular languages is

1. Not closed under union
2. Not closed under concatenation
3. Closed under complementation.
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2 Context-Free Languages

2.1 Key Definitions

Definition 2.1. A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S) where

1. V is a finite set called the variables,
2. Σ is a finite set, disjoint from V called the terminals,
3. R is a finite set of rules, each rule being a variable and a string of variables and terminals, and
4. S ∈ V is the start variable.

Consider G1 given by

S → 0S1 | B,
B → #

Here, S is the start variable, B is a variable, 0, 1,# are terminals. A sequence of substitutions to obtain
a string is a derivation and can be represented pictorially with a parse tree.

Definition 2.2. Any language that can be generated by some context-free grammar is called a context-
free language (CFL).

Definition 2.3. A string w is derived ambiguously in a CFG G if it has two or more leftmost derivations.
Grammar G is ambiguous if it generates some string ambiguously.

Definition 2.4. A context-free grammar is in Chomsky normal form if every rule is of the form

A→ BC

A→ a

where a is any terminal and A,B,C are any variables, with B,C not the start variable. We permit the
rule S → ε where S the start variable.

Definition 2.5. A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ), where Q,Σ,Γ, and F
are all finite sets, where Q, q0, F ⊆ Q are the same as always with

1. Σ is the input alphabet,
2. Γ is the stack alphabet,
3. δ : Q× Σε × Γε → P(Q× Γε) is the transition function.

PDAs are like NFAs with an extra component called a stack, that provides additional memory beyond
finite control. A PDA can write on and read symbols on the stack. Writing is called pushing and
removing a symbol is called popping.

Definition 2.6. A deterministic pushdown automaton (DPDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F )
where Q,Σ,Γ, F all finite sets with

δ : Q× Σε × Γε → (Q ∪ Γε) ∪ {∅}

is the transition function satisfying: ∀q ∈ Q, a ∈ Σ, x ∈ Γ, exactly one of the values

δ(q, a, x), δ(q, a, ε), δ(q, ε, x), δ(q, ε, ε)

is not ∅. This conforms to the principle of determinism: at each step of computation, DPDA has at most
one way to proceed according to transition function. The language of a DPDA is called a deterministic
context-free language (DCFL).
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2.2 Key Results

Theorem 2.7. Any context-free language is generated by a context-free grammar in Chomsky normal
form.

Proof. Convert any grammar G into Chomsky normal form. Add new start variable S0 → S, eliminate
all ε-rules of form A → ε and eliminate all unit rules of the form A → B and patch up grammar to be
sure that it generates the same language.

Theorem 2.8. A language is context-free ⇐⇒ some PDA recognizes it.

Proof. (⇐= ) Convert CFG G into PDA P by nondeterministically selecting one of the rules for A and
substituting A by the string on RHS of the rule. If matches input, pop the part of string that matches
and continue. (⇐=) Construct PDA P from CFG G.

Theorem 2.9. If a PDA recognizes some language, then it is context-free.

Corollary 2.10. Every regular language is context free.

Theorem 2.11 (Pumping lemma for context-free languages). If A a CFL =⇒ ∃p (pumping length)
where if s ∈ A : |s| ≥ p, s can be divided into five pieces s = uvxyz satisfying conditions

1. ∀i ≥ 0, uvixyiz ∈ A,
2. |vy| > 0, and
3. |vxy| ≤ p.

Theorem 2.12. Class of DCFLs is closed under complementation.

2.3 Proof Concepts and Examples

Example 2.13. Use stack as additional memory and check for matches on input tape.

Example 2.14. Use pumping lemma to show language not context free.
Let B = {anbncn : n ≥ 0}. WTS B not context free.

2.4 Problem Set Results

Problem 2.15. CFLs are closed under union, concatenation, and star.

Problem 2.16. CFL ∩ regular = CFL.

Problem 2.17. If G a CFG in Chomsky normal form, then for any string w ∈ L(G) of length n ≥ 1,
exactly 2n− 1 steps required for any derivation of w.
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3 The Church-Turing Thesis

3.1 Key Definitions

Definition 3.1. A Turing machine (TM) is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where Q,Σ,Γ are
all finite sets and

1. Σ is the input alphabet not containing the blank symbol ,
2. Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ,
3. δ : Q× Γ→ Q× Γ× {L,R} is the transition function,
4. q0 ∈ Q is the start state,
5. qaccept ∈ Q is the accept state, and
6. qreject ∈ Q is the reject state, qreject 6= qaccept.

The transition function has {L,R}, meaning after reading state symbol and writing a symbol, it moves
either left or right. As a Turing machine, computes, changes occur in the current state, the current tape
contents, and the current head location. A setting of these three items is called a configuration of the
Turing machine.
A Turing machine on an input may accept, reject, or loop. To loop means that the machine does not
halt. Will use high-level descriptions to describe TMs.

Definition 3.2. The collection of strings that M accepts is the language of M , or the language
recognized by M , denoted L(M).

Definition 3.3. A language Turing-recognizable if some Turing machine recognizes it.

Definition 3.4. A language Turing-decidable or simply decidable if some Turing machine decides
it. Deciders always make a decision to accept or reject, never halt.
Every decidable language is Turing-recognizable

Definition 3.5. A multitape Turing machine is an ordinary TM with several tapes. Each tape has
its own head for reading and writing.

Definition 3.6. An enumerator is a Turing machine with an attached printer. The language enumer-
ated by E is the collection of all the strings that it eventually prints out. E can generate the strings of
the language in any order, possibly with repetitions.

3.2 Key Results

Theorem 3.7. Every multitape TM has an equivalent single-tape TM.

Proof. Convert multitape TM M into an equivalent single-tape TM S. ∀a ∈ Σ, add ȧ to Σ to mark head
positions of different tapes and separate different tape inputs by #. Simulate the M on S by writing all
contents on tapes of M onto single-tape S and do what M does.

Corollary 3.8. A language is Turing-recognizable ⇐⇒ some multitape TM recognizes it.

Theorem 3.9. Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

Corollary 3.10. A language is Turing-recognizable ⇐⇒ some nondeterministic TM recognizes it.

Corollary 3.11. A language is decidable ⇐⇒ some nondeterminsitic TM decides it.

Theorem 3.12. A language is Turing-recognizable ⇐⇒ some enumerator enumerates it.

Proof. Show if M enumerates A, a TM M recognizes A. Create M such that it accepts all strings E
prints. Create E such that it prints all strings that M accepts.

Theorem 3.13 (Church-Turing thesis). Intuitive notion of algorithms ∼= Turing machine algorithms.
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3.3 Proof Concepts and Examples

Example 3.14. Using high level descriptions for TM deciders and recognizers:
Let A = {〈G〉 : G is a connected undirected graph}. Following high-level description of TM M that
decides A.
M = “on input 〈G〉, the encoding of a graph G:

1. Select first node of G and mark it.
2. Repeat the following stage until no new nodes are marked:

For each node in G, mark if it is attached by an edge to a node that is already marked.

3. Scan all nodes of G to determine whether they all are marked. If they are, accept ; otherwise, reject.”

Example 3.15. Adding symbols to stack/tape alphabet to manipulate PDAs/to show equivalence.

Example 3.16. To show TM equivalence, need to show that operations can be simulated in both
directions.

3.4 Problem Set Results

Problem 3.17. A deterministic queue automaton (DQA) is like a push-down automaton with stack
replaced by a queue. A queue is a tape allowing symbols to be written only on the left-hand side and read
on the right-hand side. Each write operation (push) adds symbol to the left-hand end of the queue and
each read operation (pull) reads and removes symbol on right-hand end. The input tape contains a cell
with blank symbol to denote end of input.
A language can be recognized by a DQA ⇐⇒ language is Turing-recognizable.
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4 Decidability

4.1 Key Definitions

Definition 4.1. Let A,B sets. A function f : A → B is one-to-one or injective if f(a) 6= f(b) =⇒
a 6= b. f is onto, or surjective, if ∀b ∈ B∃a ∈ A : f(a) = b. |A| = |B| if ∃ a bijection f : A→ B, f is
both injective and surjective.

Definition 4.2. A set A is countable if either it is finite or has the same size as N.

4.2 Key Results

Theorem 4.3. ADFA = {〈B,w〉 : B is a DFA that accepts input string w} is decidable.

Proof. Present a TM M deciding ADFA: simulate B on w and accept if B accepts, reject otherwise.

Theorem 4.4. ANFA = {〈B,w〉 : B is an NFA that accepts w} is decidable.

Proof. Present NTM N deciding ANFA: convert B into equivalent DFA C and simulate ADFA on 〈C,w〉.
Accept if ADFA accepts, reject otherwise.

Theorem 4.5. AREX = {〈R,w〉 : R is a regular expression that generates w} is decidable.

Proof. TM P deciding AREX : convert R into equivalent NFA A, run ANFA on 〈A,w〉. Accept if ANFA
accepts and reject otherwise.

Theorem 4.6. EDFA = {〈A〉 : A is a DFA and L(A) = ∅} is decidable.

Proof. DFA accepts some string ⇐⇒ able to reach accept state from start state. Design marking
algorithm for TM decider T : mark start state of A and continue to mark any state that has a transition
coming into it from any state already marked until no new states get marked. If accept state is marked,
accept. Reject otherwise.

Theorem 4.7. EQDFA = {〈A,B〉 : A and B are DFAs and L(A) = L(B)} is decidable.

Proof. Consider the symmetric difference of L(A), L(B) given by L(C) = L(A)∆L(B). Then L(C) =
∅ ⇐⇒ L(A) = L(B). Construct TM decider F : on input 〈A,B〉, construct C the symmetric difference
and simulate EDFA on 〈C〉. Accept if EDFA accepts, reject if rejects.

Theorem 4.8. ACFG = {〈G,w〉 : G is a CFG and generates w} is decidable.

Proof. Recall that a grammar in Chomsky normal form can derive any string length n in at most 2n− 1
steps. Then construct TM decider S: convert G into equivalent grammar in Chomsky normal form. List
all derivations length 2n− 1 : n = |w|. If any of these derivations generate w, accept ; if not, reject.

Theorem 4.9. ECFG = {〈G〉 : G is a CFG and L(G) = ∅} is decidable.

Proof. Might want to use ACFG to test membership in language, so in order to test L(G) = ∅, we can
test all possible w’s one by one, but this can be infinite. Different approach: need to test if start variable
can generate a string of terminals via a marking procedure. TM decider R: mark all terminal symbols in
G, mark all variables with rule A→ U1U2 . . . Uk where each Ui already marked. If start variable marked,
accept ; reject otherwise.

Theorem 4.10. EQCFG = {〈G,H〉 : G and H are CFGs and L(G) = L(H)} is not decidable.

Proof. Cannot use method used for EQDFA because class of CFLs are not closed under complement.
Will prove in later section.

Theorem 4.11. Every CFL is decidable.
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Proof. Let G a CFG for A and design TM MG deciding A: simulate ACFG on 〈G,w〉. If ACFG accepts,
accept. Reject otherwise.
This establishes a relationship among classes of languages: regular ⊂ CFL ⊂ decidable ⊂ Turing-
recognizable.

Theorem 4.12. ATM = {〈M,w〉 : M : is a TM and M accepts w} is undecidable.

Proof. We first observe that ATM is Turing-recognizable.
TM U recognizing ATM : simulate M on w. If M ever enters accept state, accept. If M ever enters reject
state, reject. This TM loops on 〈M,w〉 =⇒ doesn’t decide ATM .
Key idea: diagonalization method. AFTSOC TM H decides ATM , construct new D that uses H as
subroutine, but outputs the opposite of what H outputs. Run D on 〈D〉, but this outputs the opposite
of what D does, a contradiction (D accepts 〈D〉 ⇐⇒ D rejects 〈D〉).

Theorem 4.13. A language is decidable ⇐⇒ Turing-recognizable and co-Turing-recognizable.

Proof. ( =⇒ ) Any decidable language Turing-recognizable and complement of decidable langauge is
decidable. ( ⇐= ) If A,A both recognizable, let M1,M2 be recognizers. Construct TM decider M : run
M1,M2 on w in parallel. If M1 accepts, accept ; if M2 accepts, reject.

Theorem 4.14. ATM not Turing-recognizable.

Proof. ATM is Turing-recognizable but not decidable.

4.3 Proof Concepts and Examples

Example 4.15. Use old TMs to solve decidability problems (method for all theorems above except
ATM ).

4.4 Problem Set Results

Problem 4.16. A language is decidable ⇐⇒ some enumerator enumerates the language in string
order. String order is the standard length-increasing, lexicographic order.

Proof. There are two cases: if A is finite or infinite. If A finite, it is decidable. If A infinite, can create a
decider as follows:
On input w, decider will use enumerator to enumerate all strings in A in string order until some string
appears which is after w. If w has already appeared in the enumeration, accept ; if it hasn’t appeared yet,
it never will, so reject.

Problem 4.17. PUSHER = {〈P 〉 : P is a PDA that pushes a symbol on its stack on some branch of
computation at some point on input w ∈ Σ∗} is decidable.
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5 Reducibility

5.1 Key Definitions

Definition 5.1. A reduction is a conversion from one problem to another such that a solution to the
second problem can be used to solve the first. This is the primary method for proving that problems are
computationally unsolvable.

Definition 5.2. Let M a Turing machine and w an input string. An accepting computation history
for M on w is a sequence of configurations C1, C2, . . . , Cl where C1 the start configuration of M on w,
Cl is an accepting configuration of M and each Ci legally follows from Ci−1 according to rules of M . A
rejecting computation history for M on w is defined similarly, except Cl is a rejecting configuration.
Note: computation histories are finite sequences, e.g. must halt.

Definition 5.3. A linear bounded automaton (LBA) is a restricted Turing machine where the tape
head cannot move off the portion of the tape containing the input, e.g. it has limited memory.

Definition 5.4. A function f : Σ∗ → Σ∗ is a computable function if some Turing machine M , on
every input w, halts with just f(w) on its tape.

Definition 5.5. Language A is mapping reducible to language B, written A ≤m B if there is a
computable function f : Σ∗ → Σ∗, where for every w, w ∈ A ⇐⇒ f(w) ∈ B. The function f is called
the reduction from A to B.
Allows us to convert membership testing in A to membership testing in B.

5.2 Key Results

Theorem 5.6. HALTTM = {〈M,w〉 : M is a TM and M halts on input w} is undecidable.

Proof. AFTSOC TM R decides HALTTM . Then we can construct a TM S deciding ATM . S = run TM
R on 〈M,w〉. If R rejects, reject. If R accepts, simulate M on w until halts and output whatever M
accepts =⇒ ATM decided.

Theorem 5.7. ETM = {〈M〉 : M is a TM and L(M) = ∅} is undecidable.

Proof. Similar to HALTTM proof, assume R decides ETM and construct S deciding ATM using R. Run
R on modification of M : use Mw : M only accepts w.
Then S = use M,w to construct TM Mw. Simulate R on Mw. If R accepts, reject ; if R rejects, accept.
Observe that this decides ATM because Mw empty ⇐⇒ M rejects w, Mw nonempty ⇐⇒ M accepts
w.

Theorem 5.8. REGULARTM = {〈M〉 : M is a TM and L(M) a regular language} is undecidable.

Proof. Let R a TM that decides REGULARTM and construct TM S to decide ATM . S: on input
〈M,w〉, construct Mw : Mw accepts x if x has form 0n1n and otherwise, runs M on w, accepting if M
accepts. Now run R on 〈Mw〉. Accept if R accepts; reject otherwise.
Note that Mw recognizes the regular language Σ∗ if M accepts w.

Theorem 5.9. EQTM = {〈M1,M2〉 : M1,M2 are TMs and L(M1) = L(M2)} is undecidable.

Proof. Reduction from ETM . Let R decide EQTM construct S deciding ETM . S: simulate R on 〈M1,M2〉
where M1 rejects all inputs. If R accepts, accept ; otherwise, reject.

Lemma 5.10. Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly
qngn distinct configurations of M for a tape of length n.

Proof. There are q possible states, n head positions, and gn possible strings of tape symbols.

Theorem 5.11. ALBA = {〈M,w〉 : M is an LBA that accepts string w} is decidable.
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Proof. Key idea: simulate M on w and spit out same result if halts. Looping is a problem, but we know
there are only finitely many unique configurations for inputs length n, namely qngn.

Theorem 5.12. ELBA = {〈M〉 : M is an LBA where L(M) = ∅} is undecidable.

Proof. Reduce from ATM using computation histories. For a TM M and string w, can construct an LBA
B that accepts all accepting computation histories for M on w. If w ∈ L(M), there exists a computation
history and so L(B) 6= ∅ and if w /∈ L(M) =⇒ L(B) = ∅.
Construct B: B breaks up x according to delimiter into strings C1, C2, . . . , Cl and then determines if C1

is the starting configuration, Ci+1 follows legally from Ci, and Cl is an accepting configuration for M .
Therefore we can decide ATM .

Theorem 5.13. ALLCFG = {〈G〉 : G is a CFG and L(G) = Σ∗} is undecidable.

Proof. Proof by contradiction, reduction from ATM using computation histories, but modify representa-
tion of Cis. We want G to generate all strings that do not start with C1, do not end with an accepting
configuration, or strings where Ci does not properly yield Ci+1 under the rules of M .
Construct a PDA D (easier than designing CFG). Summary: writes the Cis in alternating order so we
can pop off the stack and compare, where D accepts if the two histories do not follow M transition
function.

Theorem 5.14. EQCFG = {〈G1, G2〉 : G1 and G2 are equivalent CFGs} is undecidable.

Theorem 5.15. PCP = {〈P 〉 : P is an instance of the Post Correspondence Problem with a
match} is undecidable.
The Post Correspondence Problem is to determine where a collection of dominoes has a match, or a list of
dominoes where the top and bottom symbols are the same. This problem is unsolvable by algorithms.

Proof. Reduction from ATM via accepting computation histories. Will create an instance of PCP where
a match forces a simulation of M to occur. Slight modification to require that the match starts with the
first domino:
MPCP = {〈P 〉 : P is an instance of the PCP with a match that starts with the first domino}.
The construction is quite tedious but can be found on pages 229-233.

Theorem 5.16. If A ≤m B and B is decidable, then A is decidable.

Proof. Let M be the decider for B and f be reduction function from A to B. Describe decider N for A:
compute f(w), run M on f(w) and output whatever M outputs.

Corollary 5.17. If A ≤m B and A is undecidable, B undecidable.

Theorem 5.18. If A ≤m B and B is Turing-recognizable, then A is Turing-recognizable. If A ≤m B and
A not Turing-recognizable, then B is not Turing-recognizable.

Theorem 5.19. EQTM is neither Turing-recognizable nor co-Turing-recognizable.

Proof. EQTM not Turing-recognizable: show ATM ≤m EQTM . Give algorithm: on 〈M,w〉: construct
M1 that rejects on all inputs and M2 that simulates M on w, accepting if it accepts. w /∈ L(M) ⇐⇒
〈M1,M2〉 ∈ EQTM .
EQTM not Turing-recognizable: show ATM ≤m EQTM . Give reduction similar to above, except M1

accepts all inputs. It follows similarly that w ∈ L(M) ⇐⇒ 〈M1,M2〉 ∈ EQTM .
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5.3 Proof Concepts and Examples

Example 5.20. Reducing from ATM to show undecidability.

Example 5.21. Use accepting computation histories for emptiness proofs!

Example 5.22 (Computable functions). Arithmetic operations on integers are computable functions,
e.g. can make machine that takes 〈m,n〉 and returns m+ n, the sum of m and n.
Can also be transformations of machine descriptions. A computable function can take an input w and
return the description of a TM 〈M ′〉 if w = 〈M〉 is an encoding of a TM M .

Example 5.23 (Mapping reductions). For HALTTM , we can show ATM ≤m HALTTM .
For the PCP problem, we showed that ATM ≤m MPCP and then MPCP ≤m PCP . Because mapping
reducibility is transitive =⇒ ATM ≤m PCP .

5.4 Problem Set Results

Problem 5.24. LTM = {〈M,w〉 : M on input w ever moves its head left when its head is on the left-most
tape cell} is undecidable.

Proof. Reduction from ATM . AFTSOC R decides LTM . Construct TM S deciding ATM :
S = “on input 〈M,w〉:

1. Convert M to M ′ where M ′ first moves its input over one square to the right and writes a new
symbol $ on the leftmost tape cell. Then M ′ simulates M on the input. If M ′ ever sees $ then M ′

moves its head one square right and remains in the same state. If M accepts, M ′ moves its head
all the way to the left and then moves left off the leftmost tape cell.

2. Run R, the decider for LTM on 〈M ′, w〉.
3. If R accepts, then accept. If it rejects, reject.”

S decides ATM because M ′ only moves left from leftmost tape cell when M accepts w.

Problem 5.25. The problem of whether a single-tape Turing machine ever writes a blank symbol over a
non-blank symbol over course of computation on any input string is undecidable.

Proof. Let E = {〈M〉 : M is a single-tape TM which ever writes a blank symbol over a nonblank symbol
when it is run on any input}. AFTSOC R decides E and construct TM S deciding ATM .
S = “on input 〈M,w〉:

1. Use M and w to construct TM Tw.

Tw = “on any input:

i. Simulate M on w. Use new symbol ’ instead of a blank when writing and treat like a
blank when reading.

ii. If M accepts, write a true blank symbol over a nonblank symbol.”

2. Run R on 〈Tw〉 to determine if Tw ever writes a blank.
3. If R accepts, M accepts w and accept. Otherwise reject.”

Problem 5.26. A language A is Turing-recognizable ⇐⇒ A ≤m ATM . A is decidable ⇐⇒ A ≤m 0∗1∗.

Proof. Create a reduction function f : if w ∈ A, output 01. If w /∈ A, output 10.

Problem 5.27. AMBIGCFG = {〈G〉 : G is an ambiguous CFG} is undecidable.

Proof. Reduce from an instance of PCP, where a match corresponds to two derivations of a string.
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Problem 5.28. A variable A in CFG G is redundant if removing it and its associated rules leaves L(G)
unchanged.
Let REDUNDANTCFG = {〈G,A〉 : A is a redundant variable in G}. REDUNDANTCFG is Turing-
recognizable and REDUNDANTCFG is undecidable.

Problem 5.29. A two-headed finite automaton (2DFA) is a deterministic finite automaton that
has two read-only, bidirectional heads that start at left-hand end of input tape and can be independent
controlled to move in either direction. The tape of a 2DFA is finite and large enough to contain input and
two blank tape cells on either end that serve as delimiters. A 2DFA accepts its input by entering special
accept state.
A2DFA = {〈M,x〉 : M is a 2DFA and M accepts x} is decidable.
E2DFA = {〈M〉 : M is a 2DFA and L(M) = ∅} is decidable.
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6 Advanced Topics in Computability Theory

6.1 Key Definitions

Definition 6.1. If M is a Turing machine, we say the length of the description 〈M〉 is the number of
symbols in the string describing M . Say that M is minimal if there is no Turing machine equivalent to
M that has a shorter description.
Let MINTM = {〈M〉 : M is a minimal TM}.

6.2 Key Results

Lemma 6.2. There is a computable function q : Σ∗ → Σ∗ where if w is any string, q(w) is a description
of a Turing machine Pw that prints out w and then halts.

Theorem 6.3 (Recursion theorem). Let T be a Turing machine that computes a function t : Σ∗ ×
Σ∗ → Σ∗. There is a Turing machine R that computes a function f : Σ∗ → Σ∗, where for every w,
r(w) = t (〈R〉, w).
This theorem esentially states that Turing machines can obtain their own description and then
go on to compute with it.

Theorem 6.4. ATM is undecidable.

Proof. We assume that a Turing machine H decides ATM , for the purpose of obtaining a contradiction.
Construct machine B:
B = “on input w:

1. Obtain via the recursion theorem, own description 〈B〉.
2. Run H on input 〈B,w〉.
3. Do the opposite of what H says. Accept if H rejects and reject if H accepts.”

Theorem 6.5. MINTM is not Turing-recognizable.

Proof. Assume that some TM E enumerates MINTM and obtain a contradiction. Construct TM C.
C = “on input w:

1. Obtain via the recursion theorem 〈C〉.
2. Run enumerator E until a machine D appears with a longer description than C.
3. Simulate D on input w.”

MINTM is infinite =⇒ E’s list must contain a TM with a longer description than C. Because C
simulates D (description longer than C), C is equivalent to D =⇒ D cannot be on the list (not
minimal), a contradiction.

6.3 Proof Concepts and Examples

6.4 Problem Set Results
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7 Time Complexity

7.1 Key Definitions

Definition 7.1. Let f, g functions f, g : N→ R+. We say that f(n) = O(g(n)) if ∃c, n0 : ∀n ≥ n0, f(n) ≤
cg(n). We say g(n) is an asymptotic upper bound for f(n), suppressing constant factors.

Definition 7.2. Let f, g : N→ R+. We say that f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

Definition 7.3. Let t : N→ R+. Define the time complexity class TIME(t(n)) to be the collection
of all languages that are decidable by an O(t(n)) time Turing machine.
O(n) is called linear time.

Definition 7.4. Let N be a nondeterministic Turing machine decider. The running time of N is the
function f : N → N where f(n) is the maximum number of steps that N uses on any branch of its
computation on any input of length n.

Definition 7.5. All reasonable computational models are polynomially equivalent, that is, any one
of them can simulate another with only a polynomial increase in running time.
P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing
machine:

P =
⋃
k

TIME(nk).

P roughly corresponds to the class of problems that are realistically solvable on a computer.

Definition 7.6. A verifier for a language A is an algorithm V where A = {w : V accepts 〈w, c〉 for some
string c}. We measure the time of the verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in lenght of w. A is polynomially verifiable if it has a polynomial
time verifier.
The verifier may use additional information to determine membership, called a certificate, denoted c.

Definition 7.7. NP is the class of languages with polynomial time verifiers.

Definition 7.8. NTIME(t(n)) = {L : L is a language decided by an O(t(n)) time nondeterministic
Turing machine} =⇒

NP =
⋃
k

NTIME(nk).

Definition 7.9. A clique is an undirected graph in a subgraph wherein every two nodes are connected
by an edge. A k-clique is a clique that contains k nodes.

Definition 7.10. A Boolean formula is an expression involving Boolean variables and operations.
A Boolean formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula
evaluate to 1. A literal is a Boolean variable of negated variable, e.g. x, x. A clause is several literals
connected with ∨s. A Boolean formula is in conjunctive normal form, called a cnf-formula if it
comprises several clauses connected with ∧s.

Definition 7.11. A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
polynomial time Turing machine M exists that halts with just f(w) on its tape, when started on any
input w.

Definition 7.12. Language A is polynomial time mapping reducible or simply polynomial time
reducible to language B, written A ≤p B if a polynomial time computable function f : Σ∗ → Σ∗ exists
where for ∀w,w ∈ A ⇐⇒ f(w) ∈ B. The function f is called the polynomial time reduction of A
to B.
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Definition 7.13. A language B is NP-complete if it satisfies two conditions:

1. B ∈ NP,
2. ∀A ∈ NP, A ≤p B.

Definition 7.14. If G is an undirected graph, a vertex cover of G is a subset of the nodes where every
edge of G touches one of those nodes.

7.2 Key Results

Theorem 7.15. Every t(n) ≥ n time multitape TM has an equivalent O(t2(n)) time single-tape machine.

Proof. Simulating a step requires a t(n) scan for each of k branches. The multi-tape TM takes t(n)
time/steps, so simulating takes O(t(n)t(n)) = O(t2(n)) time.

Theorem 7.16. Every t(n) ≥ n nondeterministic single-tape TM has an equivalent 2O(t(n)) time deter-
ministic single-tape TM.

Proof. The single-tape essentially explores the NTM’s computation tree via DFS (to simulate each branch
of computation). There are at most b valid transitions at each NTM step, and the NTM runs in t(n)
time =⇒ there are O(bt(n)) leaves. The number of leaves in a tree is basically half the number of all
nodes =⇒ there are O(bt(n)) nodes. Exploring each branch of computation is bounded by t(n) so total
time to simulate all branches is O(t(n)bt(n)) = O(2t(n))

Theorem 7.17. PATH ∈ P .

Proof. Doing BFS takes polynomial time.

Theorem 7.18. Let RELPRIME = {〈x, y〉 : x and y are relatively prime}. RELPRIME ∈ P .

Proof. Can’t simply loop through all integers less than x, y since exponentially many (in length of repre-
sentation). Instead, use Euclidean algorithm.
Define the algorithm E = “On input 〈x, y〉:

1. Repeat until y = 0:
2. Assign x← x (mod y)
3. Exchange x and y
4. Output x.”

Then just run E and check if it returns 1 or not.

Theorem 7.19. Every CFL is in P .

Proof. Recall that CFGs can be converted to Chomsky Normal Form and all derivations of a Chomsky
Normal Form grammar require only 2|w| − 1 steps on input w (2.26 in the book). Naively, testing all
derivations of length |w| to see if they match could take exponential time, so instead we use DP.
The subproblemsDP (i, j) are whether wi . . . wj can be generated by the CFG. The idea is if w is derivable,
some sequence of substring splits must exist to get the string down to individual symbols.
There are n2 such subproblems. Store the variable that generates string wi . . . wj in a memo table at
(i, j). So the base cases are (i, i) = A for rules A → wi. For each subproblem, we need to loop through
n split locations and then a constant r rules A → BC to check if some B and C form the desired split
substrings (check memo table at left and right splits to see if they match B and C, store A at (i, j) if yes.
Check if S is in memo position (1, n) (if yes, then following S will eventually yield w). Yes → accept,
reject otherwise. There are n2 subproblems; looping through splits is n =⇒ O(n3) overall run time.

Theorem 7.20. Recall HAMPATH = {〈G, s, t〉 : G is a directed graph with a Hamiltonian path from
s to t}. Directed means all nodes are visited and each node is visited exactly once. HAMPATH is in NP,
but HAMPATH is not in NP.
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Proof. A certificate for HAMPATH is simply the path – verify that it visits all nodes once and that it
goes from s to t.
It is difficult to provide a certificate to show that a graph never has a HAMPATH.

Theorem 7.21. COMPOSITES = {x : x = pq, for p, q ∈ Z+} is in NP. It is also in P.

Theorem 7.22. CLIQUE = {〈G, k〉|G is an undirected graph with a k-clique}. CLIQUE is in NP.
It is unclear if CLIQUE is in NP.

Proof. The CLIQUE is the certificate. A poly-verifier can check if G contains all edges connecting nodes
in the certificate clique.

Theorem 7.23. SUBSET-SUM = {〈S, t〉 : S = {x1, . . . xk} and some subset sums to target t} is in NP.
Also pseudo-polynomial in size of set by DP. It is unclear if SUBSET-SUM is in NP (how would you
know for sure?)

Theorem 7.24. SAT = {〈φ〉 : φ is a satisfiable Boolean formula}. It is not the language of assignments
themselves. SAT ∈ P ⇐⇒ P = NP since SAT is NP-complete.

Theorem 7.25. If A ≤p B and B ∈ P then A ∈ P . Proof is obvious (chain of polynomial computations).

Theorem 7.26. Recall 3SAT is an AND of OR clauses. 3SAT ≤p CLIQUE

Proof. This is a crucial proof concept. We will convert formulas to graphs, where components of the
graph mimic the function of the formula.
Given φ with k clauses, we poly-reduce with f(φ) = 〈G, k〉 (so we are aiming to create a k-clique). The
idea is to have triples of nodes encoding the behavior of each clause. All nodes are connected with edges
barring two exceptions: 1) nodes that are contradictory (this helps with backward direction in particular)
and 2) nodes from same triple cannot be connected (we need exactly k nodes in the clique).
( =⇒ ): If φ ∈ 3SAT , then to form a k-clique in G, include a node corresponding to a true literal in each
clause of φ (if more than once than potentially larger than k-clique). The edge conditions from above
automatically create a k-clique, since nodes are not contradictory and also not from same clause.
( ⇐= ): If there is a k-clique in G, then make the literal corresponding to the included node of each
triplet true. This satisfies φ. No problems arising from contradictory assignment since not allowed to be
in clique by edge restrictions.

Theorem 7.27. If B is NP-complete and B ≤p C for C in NP, then C is NP-complete.

Proof. Proof is fairly obvious; every problem must poly-reduce to C. Well all problems already poly-
reduce to B, which poly reduce to C (chain of poly-reductions is poly).

Theorem 7.28 (Cook-Levin). SAT is NP-complete. Remark: serves as the basis for many other NP-
complete proofs. Review PCP for more precision. See problem 7.41 for practice.

Proof. This is a pretty messy proof. Essentially, we need to convert input M,w to formula φM,w that tells
us whether or not M accepts w. The idea is to use a nk×nk configuration tableau (one nondeterministic
branch’s configuration history; nk rows for max time and nk cells (width) since runtime nk upper bounds
cell usage). Note the tableau only contains one branch’s history!
The idea is to create a formula φ that tells us if a tableau is satisfiable (i.e. accepts some input). The φ
is constructed as an AND of 4 parts (omitting details for key ideas):

φcell : Checks if all tableau cells has one and only one assignment

φstart : Checks if cells of first row are precisely a start configuration

φaccept : Checks if cells of last row are an accept configuration (row gets carried down if accept early)

φmove : Checks all 2× 3 windows across all positions (i, j) for valid variable assignments (i.e. legal move)
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It follows that M accepts w ⇐⇒ φ ∈ SAT (if M accepts w some configuration accepts, hence tableau
is accepting, so φ is true. Reverse is similar). φ is basically a bunch of groupings of literals for each
cell position, so it is indeed O(n2k), a poly-reduction. It is also easy to check that SAT ∈ NP (just use
satisfying assignment as certificate).
Note that this proof would not work with a 2× 2 window in φmove.

Theorem 7.29. 3SAT is NP-complete.

Proof. Again, assignment is certificate, so 3SAT ∈ NP . For NP-hard, we slightly modify the previous
proof. First, we convert each sub-φ to CNF form (really just φmove, since others are already in CNF).
To do so, note that an OR of ANDs can be written as an AND of ORs. Then the outer-AND is just now
a regular AND over ORs, hence we have a CNF.
Now, to get each clause to have exactly 3 literals: for all clauses with less than 3, just duplicate literals
until you get to 3. If more than 3 literals, then note you can split a clause into an AND of clauses with
dummy variables (assigned at will), like so:

(a1 ∨ a2 ∨ · · · ∨ an) = (a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3) ∧ · · · ∧ (zn−3 ∨ an−1 ∨ an)

Theorem 7.30. CLIQUE is NP-complete.

Theorem 7.31. V ERTEX-COV ER = {〈G, k〉 : G is an undirected graph that has a k-node vertex
cover} is NP-complete.

Proof. Show 3SAT ≤p V ERTEX-COV ER using gadgets.

Theorem 7.32. HAMPATH is NP-complete.

Proof. Already know HAMPATH ∈ NP, now show 3SAT ≤p HAMPATH using zig-zag gadgets (from
lecture).

Theorem 7.33. UHAMPATH, the undirected HAMPATH problem, is NP-complete.

Proof. Show HAMPATH ≤p UHAMPATH.

Theorem 7.34. SUBSET -SUM is NP-complete.

Proof. 3SAT ≤p SUBSET -SUM .

7.3 Proof Concepts and Examples

Example 7.35. Simulating multi-tape machine on single-tape machine.
A single tape TM S stores each of the multi-tape TM’s tapes horizontally. There are special dotted tape
symbols to represent a head position.
To simulate M , S scans across its tape to find where the dotted symbols are (representing M ’s tape
heads). Makes another pass to update tape contents according to M . If one of the multi-tapes needs
more space, S shifts all its tape contents right by one.
Each multi-tape TM step is simulated in is O(t(n)) · k time. Multi-tape runs in O(t(n)) time, i.e. steps.
So O(t2(n)) time to simulate.

Example 7.36. Use DP to bring exponential time problems down to poly-time.

Example 7.37. Converting into 3CNF form:
Duplicate literals (does not change satisfiability) to reach 3. To reduce to 3:

(a1 ∨ a2 ∨ · · · ∨ an) = (a1 ∨ a2 ∨ z1) ∧ (z1 ∨ a3 ∨ z2) ∧ (z2 ∨ a4 ∨ z3) ∧ · · · ∧ (zn−3 ∨ an−1 ∨ an)

Example 7.38. You can prevent two literals a, b from being simultaneously true by asserting:

(a ∨ b), which is false when both a and b are true
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7.4 Problem Set Results
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8 Space Complexity

8.1 Key Definitions

Definition 8.1. LetM be a deterministic Turing machine that halts on all inputs. The space complexity
of M is the function f : N→ N where f(n) is maximum number of tape cells that M scans on any input
of length n.

Definition 8.2. The space complexity classes, SPACE(f(n)) and NSPACE(f(n)) are defined as:
SPACE(f(n)) = {L : L is a language decided by an O(f(n)) space deterministic TM}.
NSPACE(f(n)) = {L : L is a language decided by an O(f(n)) space deterministic NTM}.
Definition 8.3. PSPACE is the class of languages that are decidable in polynomial space on a deter-
ministic Turing machine, PSPACE=

⋃
kSPACE(nk).

Definition 8.4. A language B is PSPACE-complete if it satisfies:

1. B ∈ PSPACE,
2. ∀A ∈ PSPACE, A ≤p B.

If B only satisfies condition 2, we say B is PSPACE-hard.

Definition 8.5. Boolean formulas with quantifiers are called quantified Boolean formulas.

Definition 8.6. L is the class of languages decidable in logarithmic space on a deterministic TM,
L=SPACE(log n).
NL is the class of languages that are decidable in logarithmic space on a NTM, NL=NSPACE(log n).

Definition 8.7. If M is a TM that has a separate read-only input tape and w is an input, a configu-
ration of M on w is a setting of the state, work tape, and positions of the two tape heads.

Definition 8.8. A language B is NL-complete if

1. B ∈ NL,
2. ∀A ∈ NL, A ≤L B, A is log space reducible to B.

8.2 Key Results

Theorem 8.9 (Savitch). For any function f : N→ R+ where f(n) ≥ n,NSPACE(f(n)) ⊆ SPACE(f2(n)).

Theorem 8.10. TQBF = {〈φ〉 : φ is a true fully quantified Boolean formula} is PSPACE-complete.

Theorem 8.11. FORMULA-GAME = {〈φ〉 : player E has a winning strategy in the formula game
associated with φ} is PSPACE-complete.

Proof. This is the same language as TQBF .

Theorem 8.12. GG = {〈G, b〉 : player I has a winning strategy for the generalized geography game
played on a graph G starting at node b} is PSPACE-complete.

Definition 8.13. If A ≤L B and B ∈ L =⇒ A ∈ L.

Corollary 8.14. If any NL-complete language is in L, then L=NL.

Theorem 8.15. PATH is NL-complete.

Proof. Proof idea: we know PATH ∈ NL. To show hard, construct a graph that represents the compu-
tation of the nondeterministic log space TM machine for A.

Corollary 8.16. NL ⊆ P .

Proof. Immediately follows theorem because PATH ∈ P.

Theorem 8.17. NL=coNL.

Proof. Proof idea: show PATH ∈ NL.
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8.3 Proof Concepts and Examples

Example 8.18. O(f(n)) space =⇒ 2O(f(n)) time before machine loops (think about all possible different
configurations machine could take on before repeating one).

Example 8.19. (Problem 8.8): We can test the equivalence of two regular expressions in polynomial
space.

8.4 Problem Set Results
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9 Intractability

9.1 Key Definitions

Definition 9.1. An intractable problem is one that can’t be solved practically due to excessive time
or space requirements.

Definition 9.2. A function f : N → N where f(n) ≥ O(log n) is called space constructible if the
function maps the string 1n to the binary representation of f(n) using only O(f(n)) space.
Example: f(n) = k for constant k is not space constructible, as the computation requires deleting 1n

in O(n) time before writing the binary representation log k. To account for f(n) < O(log n) we use the
same “read-only” tape idea as the log-space transducer.

Definition 9.3. EXPSPACE =
⋃
k SPACE(2n

k

).

Definition 9.4. A function t : N → N where t(n) ≥ O(n log n) is time constructible if t maps 1n to
the binary representation of t(n) in O(t(n)) time.

Definition 9.5. A language B is EXPSPACE-complete if

1. B ∈ EXPSPACE, and
2. ∀A ∈ EXPSPACE, A ≤p B.

Definition 9.6. An oracle for language A reports whether w ∈ A in one step.

Definition 9.7. An oracle Turing machine MA is a TM that can query an oracle for A via an oracle
tape. PA is class of languages decidable in poly-time with a TM with oracle A. NPA is class of languages
decidable in non-deterministic poly-time with a TM with oracle A.
Remark : NPA means non-determnistically pick, then check with PA.

9.2 Key Results

Theorem 9.8 (Space hierarchy). For any space constructible f , there exists language A that is decidable
in O(f(n)) space but not o(f(n)) space. i.e. some language requires at least f(n) space to be decided.

Proof. Proceed by diagonalization. Basically, we want to describe a language by constructing an as-
sociated TM that does the exact “opposite” of all “smaller”-space TMs. This algorithm runs TMs on
descriptions of TMs, doing the opposite of individual TMs that run in o(f(n)) space (no requirement to
be different from TMs that run in more than f(n) space), and rejecting otherwise.
Consider the following algorithm that decides A: Let D = “On input w:

1. Let n be the length of w.
2. Compute f(n) in O(f(n)) space (constructability). Mark off f(n) cells – this is the maximum space

that any simulated TM can use. Reject if more space is ever used.
3. Check if w is in the form 〈M〉10∗ for some M . The trailing 0’s are to allow asymptotic behavior

to “kick in” for large enough n (D might run in more than f(n) space for small n and miss an
opportunity to contradict M running in o(f(n)) space). If not in this form reject.

4. Simulate M on w and count the number of steps used in simulation. D might loop, so we cap the
steps at 2f(n) since there are max f(n) cells to use. Exceed cap =⇒ loop =⇒ reject.

5. If M accepts, reject. If M rejects, accept.

D is obviously a decider. It runs in f(n) = O(f(n)) space, so A decidable in O(f(n)) space. AFTSOC
some M decides A in o(f(n)) space. Then on sufficiently long input 〈M〉10n0 , D runs in f(n) space and
does the opposite of M , so A cannot be decided by M .

Corollary 9.9. For any two functions f1, f2 : N→ N where f1(n) is o(f2(n)) and f2 is space constructible
=⇒ SPACE(f1(n)) ( SPACE(f2(n))
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Proof. Immediate corollary from Space Hierarchy – if some languages absolutely require O(f(n)) space,
then the languages decidable in this space is larger than a smaller space.

Corollary 9.10. For any real numbers 0 ≤ ε1 < ε2 =⇒ SPACE(nε1) ( SPACE(nε2)

Corollary 9.11. NL ( PSPACE. Remark: this implies TQBF 6∈ NL (since TQBF is PSPACE-
complete w.r.t. log-space reduction, then TQBF ∈ NL =⇒ all problems in PSPACE log-space reducible
to problem in NL =⇒ PSPACE ⊆ NL =⇒ NL = PSPACE.)

Proof. NL = NSPACE(log n) ⊆ SPACE(log2 n) by Savitch. Then by Space Hierarchy, SPACE(log2 n) (
SPACE(nk) ⊂ PSPACE.

Corollary 9.12. PSPACE ( EXPSPACE

Theorem 9.13 (Time hierarchy). For any time constructible t(n), there exists language A requiring
O(t(n)) time to be decided (not decidable in o(t(n)/ log t(n)) time).

Proof. Remark: note the weaker bound. This is because simulating M on 〈M〉 requires a logarithmic
increase in time, rather than a constant increase in space (just use multiple D tape symbols to represent
a larger alphabet of M).
For the actual proof, consider the following O(t(n)) time D deciding A:

1. Let n be the length of w.
2. Compute t(n) (constructible inO(t(n))) and store binary representation of the counter t(n)/ log t(n).

Decrement counter for each simulation step of M on w. If counter hits 0, M has used t(n)/ log t(n)
time, meaning D has taken t(n) time, so reject.

3. If w is not in form 〈M〉10∗, reject.
4. Simulate M on w.
5. Do opposite of M .

The details of the log increase in simulation time for step 4 are omitted for the sake of sanity.

Corollary 9.14. For any two functions t1, t2 : N → N where t1(n) is o(t2(n)/ log t2(n)) and t2 is time
constructible =⇒ TIME(t1(n)) ( TIME(t2(n)).

Corollary 9.15. For any two real numbers 1 ≤ ε1 < ε2 =⇒ TIME(nε1) ( TIME(nε2).

Corollary 9.16. P ( EXPTIME

Theorem 9.17. Let EQREX↑ = {〈Q,R〉 : Q and R are equivalent regular expressions with exponentiation
}. Then we have that EQREX↑ is EXPSPACE-complete.

Proof. Reductions by computation histories (see page 220 in Section 5.1 for review).
First we show EQREX↑ ∈ EXPSPACE. Writing out the regular expressions as concatenations instead
of exponentiation gives us exponential-length inputs. Converting regex to NFAs increases size linearly.
Then test in-equivalence of NFA using NTM. To do so, non-deterministically pick one-by-one an input
symbol to read for 2q1 · 2q2 = 2q1+q2 steps (all possible subsets of states, more steps would guarantee
a repeat of “state of states”). This takes linear time in length of input (recall encoding NFA encodes
exponential transition function possibilities). A deterministic version takes n2 time (Savitch), where n is
exponential.
Now, we need to show EQREX↑ is EXPSPACE-hard (all languages poly-reduce to it). We basically
map w ∈ A to regex R1 and R2. R1 = ∆∗ where ∆ = Γ∪Q∪#. We construct R2 to be all the computation
histories that do not lead to a reject on input w. Clearly w ∈ A ⇐⇒ R1 = R2 ⇐⇒ 〈R1, R2〉 ∈ EQREX↑.
Let R2 = Rbad−start ∪Rbad−reject ∪Rbad−window. We describe each regex qualitatively:

Rbad−start = S0 ∪ · · · ∪ Sn ∪ SB ∪ S#
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Each regex Si generates strings not including the ith appropriate symbol of the starting configuration at
the ith location. Special case for SB , since encompasses all missed trailing blank locations (location n+ 2

to 2(n
k), could be expo). Instead: SB = ∆n+1(∆ ∪ ε)2(n

k)−n−2∆− ∆∗.
The notation ∆−q0 is shorthand for writing the union of all symboles in ∆ except q0.
Then Rbad−reject = ∆∗−qreject (straightforward).
Similar to Cook-Levin proof, we have:

Rbad−window =
⋃

bad(abc,def)

∆∗abc∆(2(n
k)−2)def∆∗.

This is the same 2× 3 invalid window approach we’ve seen before. Note the (2n
k

)− 2 difference: this is

the distance from c to d one configuration away (c to f is exactly 2n
k

, so subtract 2).

Theorem 9.18. There exists oracle A such that PA 6= NPA. Remark: this suggests we cannot solve
P = NP because that would imply PA = NPA for all A.

Proof. Consider language LA = {w : ∃x ∈ A[|x| = |w|]} for any oracle A. LA ∈ NPA (to check if w ∈ LA,
guess the right x and check if x ∈ A using oracle for A). We construct a particular A.
Consider M1,M2 . . . running in ni time. At each i, we construct A so that MA

i cannot decide LA. At
stage i, pick n that is greater than length of any string currently in A, and such that 2n > ni.
Run Mi

Theorem 9.19. There exists oracle B such that PB = NPB. Remark: this suggests we cannot solve
P 6= NP because that would imply PB 6= NPB for all B.

Proof. Consider any PSPACE-complete problem, like TQBF . ThenNPB ⊆ NPSPACE ⊆ PSPACE ⊆
PB .

9.3 Proof Concepts and Examples

Example 9.20. NP ⊆ PSAT since all problems in NP reduce to SAT with some poly-time reduction,
then we can check in one step if in SAT . It follows that NP ⊆ coPSAT =⇒ coNP ⊆ PSAT .

Example 9.21. It is unclear if MIN-FORMULA ∈ NP (guess smaller formula, but would need to verify
truthiness across potentially exponential inputs). However, we know MIN-FORMULA ∈ NPSAT . First,
we can decide in-equivalence of φ in NP (guess the right assignment), so equivalence is decidable in
coNP . To decide MIN-FORMULA, guess the right smaller φ′ then easily verify if φ′ = φ using PSAT

since coNP ⊆ PSAT .

9.4 Problem Set Results
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10 Advanced Topics in Complexity Theory

10.1 Key Definitions

Definition 10.1. A probabilistic TM M is a nondeterministic TM where each nondeterministic step
is a coin flip step with two equally legal moves. The probability of following any branch of computation
b is Pr[b] = 2−k, with k being the number of coin-flip steps on the branch. We define the probability of
PTM M accepting w as Pr[M accepts w] =

∑
b accepting Pr[b]

Definition 10.2. A PTM decider M need not be correct all the time. Indeed, we say M decides A
with error probability ε if the decider is wrong with probability ε, i.e.:

1. w ∈ A =⇒ Pr[M accepts w] ≥ 1− ε
2. w 6∈ A =⇒ Pr[M rejects w] ≥ 1− ε

Definition 10.3. BPP is the class of languages decidable by a probabilistic poly-time TM with ε = 1/3
(sufficient by amplification lemma).

Definition 10.4. A branching program is a directed acylic graph that has query nodes labeled xi
having two outgoing edges labeled 0 or 1, two output nodes labeled 0 and 1 without any outgoing edges.
One node is designated the start node. Remark: a BP describes a Boolean function f : {0, 1}m → {0, 1}
(following the BP path using assignment will lead you to a 0 or 1).

Definition 10.5. RP is the class of languages decided by probabilistic polynomial time TMs where
inputs in the language are accepted with probability at least 1/2 and inputs not in the language are
rejected with probability 1.

Definition 10.6. A branching program is a directed acyclic graph where all nodes are labeled by
variables, except for two output nodes labeled 0, 1. Nodes that are labeled by nodes are called query
nodes, each with two outgoing edges labeled 0 or 1. Output nodes have no outgoing edges.
A read-once branching program is one that can query each variable at most one time on every
directed path from start to output node.

Definition 10.7. Graphs G,H are isomorphic if nodes of G can be reordered so that it is identical to
H. Let ISO = {〈G,H〉 : G ∼= H}, and NONISO = {〈G,H〉 : G � H}.
Note ISO ∈ NP but NONISO not known to be in NP. Neither are known to be NP-hard.

Definition 10.8. Language A is in IP if some polynomial time computable function V exists such that
for some (arbitrary) function P and for every (arbitrary) function P̃ and for every string w:

1. w ∈ A =⇒ P (V ↔ P accepts w) ≥ 2/3,

2. w /∈ A =⇒ P (V ↔ P̃ accepts w) ≤ 1/3.

If w ∈ A, some Prover P , an “honest” Prover, causes Verifier to accept with high probability. But if
w /∈ A, not even a “crooked” Prover P̃ causes Verifier to accept with high probability.

Definition 10.9. The counting problem for satisfiability is the language #SAT = {〈φ, k〉 : φ is a
cnf-formula with exactly k satisfying assignments}.

10.2 Key Results

Lemma 10.10 (Amplification). Let 0 < ε < 1/2 be a fixed constant. Then for any polynomial p(n), a
probabilistic polynomial time TM M1 that operates with error probability ε has an equivalent probabilistic
polynomial time TM M2 that operates with error probability 2−p(n).

Theorem 10.11. PRIMES = {n : n is a prime number in binary} ∈ BPP.

Theorem 10.12. COMPOSITES ∈ RP.



MIT 6.840 Notes 27

Theorem 10.13. EQROBP = {〈B1, B2〉 : B1
∼= B2} ∈ BPP.

Lemma 10.14. For every d ≥ 0, a degree-d polynomial p on a single variable x either has at most d
roots or is everywhere equal to 0.

Lemma 10.15. Let F a finite field with f elements and let p be a nonzero polynomial on variables
x1, . . . , xm where deg xi ≤ d. If a1, . . . , am ∈ F selected randomly, then P (p(a1, . . . , am = 0) ≤ md/f .

Theorem 10.16. IP=PSPACE.

Lemma 10.17. PSPACE ⊆ IP.

Theorem 10.18. #SAT ∈ IP .

Proof. Proof idea: V and P must exchange #φ(r1 · · · rnz · · · ) for arithmetized Boolean formulas (poly-
nomials) and compare the number of satisfying assignments. Details ommited.

10.3 Proof Concepts and Examples

10.4 Problem Set Results
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