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We present a theoretical overview of superconductivity, followed by an experimental investigation
and classification of eleven metal samples as type I, type II, or non-superconducting. We observe
the superconducting transition through measurements of the differential magnetization χ of each
sample, and from the resistance of one sample. We estimate the transition fields and temperatures
of one type I sample and one type II sample and determine the coherence length ξ and penetration
depth λ of the former.

I. INTRODUCTION

Superconductivity was discovered in 1911 at Leiden
University by H. Kamerlingh Onnes, who was the first to
successfully liquefy helium and achieve cooling to a few
degrees Kelvin [1]. What Onnes observed was that for
certain metals, electrical resistance dropped sharply to
zero below a certain critical temperature of a few Kelvin.

In this article, we aim to overview the basic properties
of superconductors. We start by covering the prevailing
theoretical understanding and discussing its key predic-
tions. Subsequently, we investigate the superconducting
transitions of eleven samples of seven different metals and
one non-metal. We describe our setup, which consisted
of a variable-temperature cryostat equipped to perform
differential magnetization and resistance measurements.

We conclude by classifying our samples as non-
superconducting, type I superconducting, or type II su-
perconducting, and provide calculations of the transi-
tion fields and transition temperature for two samples,
as well as estimates of the coherence length and penetra-
tion depth for one lead sample.

II. THEORY OF SUPERCONDUCTIVITY

The key properties of the superconducting state are:

1. Perfect conductivity (arbitrarily low electrical re-
sistance), discovered by H. Kamerlingh Onnes [1].

2. The Meissner effect: expulsion of any magnetic field
(Figure 1) from the interior of the sample beyond
a penetration depth λ from the surface, discovered
in 1933 by W. Meissner and R. Ochsenfeld [2].

All superconductors have a critical temperature Tc and
a temperature-dependent critical magnetic field Hc(T ):
at sufficiently high temperature and/or magnetic field,
the superconducting state is destroyed and the material
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(a) Superconducting. (b) Regular.

FIG. 1: The Meissner effect: magnetic fields (depicted
by field lines) are expelled in the superconducting state,

but pass through unchanged in the regular state.

behaves regularly. Empirically, it has been observed that
the critical field depends on temperature as

Hc(T ) ≈ Hc(0)

[
1−

(
T

Tc

)2
]
. (1)
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FIG. 2: Phase diagram of a simple superconductor,
showing the superconducting state below the critical

temperature Tc and the temperature-dependent critical
field Hc(T ).

Similarly, the penetration depth has the following em-
pirically observed temperature dependence:

λ(T ) ≈ λ(0)√
1− (T/Tc)4

. (2)
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This shows that λ diverges as T → Tc or H → Hc and
the material becomes normal.

A. Phenomenological description

Phenomenologically, the perfect diamagnetism (Meiss-
ner effect) of superconductivity can be explained by pre-
supposing perfect conductivity, through an analog of the
Drude model with no dissipative factors.

We start by considering the effect of an electric field
E on the current J = −nev of electrons with number
density n in the absence of dissipation:

nm
dv

dt
= −neE =⇒ E = Λ

dJ

dt
, Λ ≡ m

ne2
. (3)

Now consider a magnetic field applied externally on such
a superconducting sample. As the field is increased from
zero, Faraday’s Law will induce an electric field and loops
of current. With Ampere’s Law, this additional current
will produce a magnetic field to cancel the applied field:

−dB
dt

= ∇×E = Λ
d

dt
∇× J =

Λ

µ0

d

dt
∇×∇×B

= − Λ

µ0

d

dt
∇2B =⇒ ∇2B =

µ0

Λ
B (4)

where we used ∇ ·B = 0 and neglected the typically mi-
nuscule displacement current. For a magnetic field of B0

at the boundary (x = 0) of an infinitely long supercon-
ductor, this has solutions

B(x) = B0e
−x/λ, λ =

√
Λ

µ0
(5)

within the material.
Thus we see that the current loops screen out the mag-

netic field, up to a penetration depth λ. Note that the
key difference from a regular conductor is that the lack
of dissipative effects allow the current loops introduced
from ramping up the field to remain even after the field
is held constant, maintaining the screening effect for in-
definite time.

The above relations, known as the London equations
after Fritz and Heinz London [3], are summarized as

B = −Λ∇× J , E = Λ
dJ

dt
. (6)

B. Bardeen–Cooper–Schrieffer theory

The first widely accepted microscopic theory of super-
conductivity was proposed by J. Bardeen, L. N. Cooper,
and J. R. Schrieffer in 1957 [4], and is still widely accepted
as the prevailing model for the microscopic properties of
superconductors.

At the core of BCS theory is the presence of an at-
tractive interaction V (r1 − r2) between two electrons at

positions r1, r2. Converting r1, r2 to the center of mass
and relative coordinatesR = (r1+r2)/2, r = r1−r2, and
neglecting R due to translational invariance, the Fourier
components of V (r) can be identified:

Vq ≡
∫
V (r)e−iq·rdr =

∫
e−ik·r1eik·r2V (r)eik

′·r1e−ik′·r2dr

(7)
where k is arbitrary and k′ ≡ k−q. This is evidently the
scattering potential for a pair of electrons with equal and
opposite momenta (k′,−k′) into new momenta (k,−k).
If this interaction has a negative sign, it can lead to bound
superposition states of pairs of electrons with opposite
momenta that are localized (relative to each each other):∑

k

gke
ik·r1e−ik·r2 =

∑
k

gke
ik·r. (8)

This as well as the rest of the features of superconduc-
tivity can be observed within the so-called BCS pairing
Hamiltonian, which adds the aforementioned pair scat-
tering term to the standard electron gas energy spectrum.
The pairing Hamiltonian is:

H =
∑
k,σ

ϵknkσ +
∑
k,l

Vkla
†
k↑a

†
−k↓a−l↓al↑ (9)

where a†kσ, akσ are the fermionic creation and annihila-
tion operators for electrons with momenta k and spin σ,

nkσ = a†kσakσ is the number operator, and ϵk = ℏ2k2

2me
are

the plane-wave energies, which when unperturbed pro-
duce a continuous spectrum in the bulk limit:

ϵk+dk − ϵk ≤ ℏ2

2m
((k + dk)2 − k2) =

ℏ2k
m

dk. (10)

The key property of the BCS Hamiltonian from which
superconductivity arises is a non-trivial spectral gap ∆
(energy difference between the first two states), in con-
trast to the continuous spectrum above. If the interaction
terms Vq are non-positive, a gapped ground state of lower
energy than the standard Fermi sea at T = 0 appears.
Because the attractive interaction between electrons

leads to bound states of pairs of electrons with opposite
momenta, BCS posits that the superconducting ground
state consists of many such states, called Cooper pairs,
all together giving a total momentum of 0. The ground
state energy gap ∆ then gives the energy needed to break
a single Cooper pair at the Fermi surface, as that is the
smallest excitation possible from this ground state.
The fact that the ground state is gapped also means

that at sufficiently low temperatures (≪ ∆/kB), the sys-
tem momentum will largely remain at 0. Introducing the
canonical momentum p = mv − eA of an electron in a
magnetic vector potential A, we see that if the momen-
tum is fixed at 0, then the velocity must change when we
introduce A, giving

v =
eA

m
. (11)
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The corresponding supercurrent with electron carrier
density n reproduces the London equations discussed
above:

J = −nev = −ne
2

m
A =⇒ B = ∇×A = −Λ∇× J ,

(12)
justifying the Meissner effect.

As temperature T increases, in a mean-field treatment
the thermodynamic energy gap ∆(T ) — defined as the
energy needed to break a Cooper pair at the Fermi sur-
face in the presence of a thermal sea of broken and unbro-
ken pairs — decreases as more pairs are broken. Clearly,
∆(0) = ∆; as T increases, ∆ approaches zero at the
critical temperature Tc, where superconductivity is de-
stroyed. BCS theory predicts the following relationships
for superconductors with weak electron-electron interac-
tions:

∆(0) = 1.764kBTc,
∆(T )

∆(0)
≈ 1.74

√
1− T

Tc
, T ≈ Tc.

(13)
The ground state gap ∆ also leads to an expression for

the condensation energy at zero temperature of a sample
with N electrons:

Un(0)− Us(0) =
1

2
N(0)∆2(0). (14)

Identifying this with the energy required to screen out
a field µ0H

2/2 (see Eq. 22), we obtain a relationship
for the zero-temperature critical field Hc beyond which
the energy required for the Meissner effect exceeds the
condensation energy of the superconducting state, and
the material becomes normal:

Hc(0) = ∆(0)
√
N(0)/µ0. (15)

Lastly, perfect conductivity is explained in the BCS
theory simply from the presence of the energy gap, which
forces any dissipative process to excite the entire many-
body wave function by the non-trivial gap value.

C. Ginzburg-Landau theory

A powerful macroscopic theory of superconductivity in
the context of thermodynamic phase transitions was in-
troduced by Vitaly Ginzburg and Lev Landau in 1950
[2]. The Ginzburg-Landau (GL) theory defines a pseu-
dowavefuncion ψ that represents the density of supercon-
ducting charge carriers n∗, such that n∗ = |ψ|2. It then
postulates an expansion of the free energy Fs:

Fs = Fn0+
µ0H

2

2
+αn∗+

β

2
(n∗)2+

1

2m∗ |(−iℏ∇−e∗A)ψ|2

(16)
where Fn0 is the free energy density of the regular state
at zero field, µ0H

2/2 is the energy required to diamag-
netically screen out a field H (see Eq. 22), and the next

two terms represent a general second-order expansion of
the free energy dependence on the density of supercon-
ducting electrons. The last term can be rewritten as

n∗
1

2
m∗v2s +

ℏ2

2m∗ (∇|ψ|)2 (17)

where the first component represents the kinetic energy
contribution of the supercurrent of velocity vs, and the
second adds dependence on the curvature of ψ and is
associated with surface energy between domains. The
charge carriers in this model have mass m∗ and charge
e∗; assuming Cooper pair charge carriers, these can be
taken to be twice the values for the electron.
The thermodynamic equilibrium state of a supercon-

ductor is determined by minimizing the free energy Fs,
expressed by the GL differential equation dF/dψ = 0.
This involves a trade-off between all the components
mentioned above.
In the context of this thermodynamic treatment, sev-

eral parameters arise. We list them here and reference
the reader to Chapter 4 of M. Tinkham’s “Introduction
to Superconductivity” [2] for further discussion:

1. The penetration depth λeff, which takes the same
form as in the London equations:

λeff ≡

√
m∗

n∗(e∗)2µ0
. (18)

2. The characteristic length scale of the wave function
ξ, associated with the value of its second derivative:

ξ ≡

√
ℏ2

2m∗|α|
. (19)

We can briefly see the origin of this expression by
considering the free energy minimization condition
dFs/dψ = 0, taking A = H = β = 0 and ψ to be
real for simplicity:

1

2

dFs

dψ
= αψ +

ℏ2

2m∗∇
2ψ = 0 =⇒ ∇2ψ = − 1

ξ2
ψ (20)

which has solutions in 1 dimension of the form
eix/ξ.

Notably, at length scales much smaller than ξ, we
expect the wave-function not to vary significantly.

3. The Ginzburg-Landau dimensionless parameter κ:

κ ≡ λeff(T )

ξ(T )
=

√
2e∗Hc(T )λ

2
eff(T )/ℏ. (21)

The relation with Hc, λeff is determined from mini-
mizing the GL free energy expression (Eq. 16) and
substituting the definition of Hc (Eq (22). While
some temperature dependence is perhaps expected
from the equation above, κ typically varies very
slowly with T .
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4. The thermodynamic critical field Hc. This is de-
fined as the field at which the energy required to
screen out the magnetic field exceeds the free en-
ergy difference between the normal and supercon-
ducting state (at zero field). In the perfect diamag-
netic case (the Meissner effect) with magnetization
M = −H

Fn0 − Fs0 = −
∫ Hc

0

M · (µ0dH) =
µ0H

2
c

2
. (22)

5. The bulk nucleation field Hc2 , below which super-
conducting regions can form within the material.
Beyond this value, there are no non-zero solutions
for ψ to the GL equation dF/dψ = 0. This is given
by

Hc2 = κ
√
2Hc. (23)

6. The penetration field Hc1 . Above this field, it is
thermodynamically favorable for flux to penetrate
the material. For κ≫ 1, this is given by

Hc1 ≈ lnκ

κ
√
2
Hc. (24)

Ginzburg and Landau, and later Alexei Abrikosov and
Lev Gor’kov [2], distinguished between two types of su-
perconductors with radically different properties, emer-
gent from the GL theory. These properties are summa-
rized in Table I:

TABLE I: Key differences between type I and type II
superconductors. γ is the surface energy, defined as the

free energy per unit area of boundaries between
superconducting and normal regions. PT is short for

phase transition.

Type I Type II

κ < 1/
√
2 κ > 1/

√
2

γ > 0 γ < 0
Hc2 < Hc Hc2 > Hc

1st order PT 2nd order PT
Supercooling No supercooling

Type I superconductors have positive surface energy
γ, so it is favorable to minimize the number of bound-
aries and thus the type I state is typically either entirely
superconducting (with very little flux penetration) or en-
tirely normal. On the other hand, type II materials have
negative γ, so there is penetrating flux in an intermedi-
ate state above Hc1 where the material subdivides into
normal regions and superconducting “vortices” (analo-
gous to microscopic supercurrent loops) on the scale of
ξ, maximizing the total boundary area.
Type I and type II superconductors are further distin-
guished by the relationship between Hc and Hc2 . Since
a type I samples has Hc2 < Hc, when approaching the

superconducting transition from high field it can “super-
cool”, remaining in the superconducting state below Hc

until Hc2 is reached and superconducting regions can nu-
cleate in a rapid, first-order transition. When approach-
ing the transition from low field, the sample remains su-
perconducting past Hc2 until a first order phase transi-
tion at Hc. In contrast, a type II superconductor has
Hc1 < Hc < Hc2 , so it will have a smooth second-order
transition in both directions between Hc1 to Hc2 .

III. EXPERIMENTAL SETUP

A. Cryostat

We used a Janis model 8DT variable-temperature cryo-
stat (pictured in Figure 3) with two cryogenic reservoirs:
one (the outer chamber) for liquid nitrogen and the other
(the inner chamber) for liquid helium. At the center of
the cryostat was the sample chamber, which was sus-
pended below the main reservoirs and within a large elec-
tromagnet, and isolated from the surrounding reservoirs
via a vacuum jacket. After transferring nitrogen and he-
lium to the reservoirs, cooling of the sample was initi-
ated by opening the helium needle valve and transferring
a small amount of liquid into the bottom of the sample
chamber. This helium was then vaporized by the heater,
and maintained at a constant temperature via a feed-
back loop through a temperature sensor (sensor “A”)
at the bottom of the chamber. The temperature sen-
sor was a model TG-120P GaAlAs diode, controlled by
a Lake Shore Cryotronics model 805 temperature con-
troller. This allowed temperature control above 4.2 K.
For control below 4.2 K, a larger amount of liquid he-
lium (1-2 liters) were transferred to the sample chamber,
which was then closed off from the helium reservoir. With
the heater turned off the sample chamber was then vac-
uum pumped and the temperature was determined from
the vapor pressure of helium.

B. Sample chamber

The sample chamber contained our ten metal and non-
metal samples. The samples were labelled Cu (copper);
In (indium); In2Bi (a 98-2 indium-bismuth alloy); In4Bi
(a 96-4 indium-bismuth alloy); Pb0, Pb1, and Pb2 (lead);
PTFE (Teflon); Sn (tin); and SnPb (a a 60-40 tin-lead
alloy). Each sample was cylindrical with its long axis
oriented along the magnetic field direction, 16 mm long
and 1 mm in diameter, with 240 turns of #40 varnished
magnet wire wrapped in 2 layers around them, except for
samples Pb0 and Pb1. Pb1 had a single layer of 120 turns
of wire, while Pb0 was 6 mm long and 3/4 mm in diam-
eter with a single layer of 40 turns. The magnetic wire
was used for inductive measurements of the differential
magnetization (see Eq. 26). The samples were placed in
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a sample holder within the sample chamber. The com-
bined configuration and one example sample are shown
in Figure 4.

There was an eleventh sample in the chamber in a dif-
ferent configuration. This sample was the same mate-
rial as the SnPb sample, but arranged in a thin ribbon
roughly 1 m x 2 mm x 0.1 mm in size when wound, and
on the order of 1 meter when unwound. This sample
was wound non-inductively and four contacts (2 for cur-
rent, 2 for voltage) were placed at its ends to perform a
four-probe resistance measurement.

Temperature at the samples themselves (slightly above
the bottom of the chamber) was measured by a sec-
ond TG-120P GaAlAs diode (sensor “B”) connected to
the same Lake Shore Cryotronics temperature controller
mentioned in the cryostat description.

electromagnet

sample mount and 

temperature sensor 

sample coil

reference coil

vaporizer (heater)

vacuum

helium 

reservoir

nitrogen 

reservoir

nitrogen 

cover

liquid helium reservoir 

fill/vent tube

sample tube 

pumping port

isolation 

tube

helium 

needle valve

capillary tube

FIG. 3: Our cryostat setup.

C. Magnetic field control and measurement

An 12-inch diameter poleface Varian electromagnet
surrounding the sample chamber applied a field along
the cylindrical axes of the samples. The magnet was
controlled by a Kepco BOP 20-20M amplifier capable of
driving a DC magnetic field up to 2.4 kGauss, although
we did not exceed 1 kGauss in our experiment. The field
was measured less than 1 cm from the outside of the
sample chamber with a Bell HTB1-0608 transverse Hall
probe controlled by a Bell 615 Gaussmeter. We cali-
brated the Gaussmeter’s analog output with its magnetic
field readings.

D. LF setup

For differential magnetization measurements, the mag-
netic field was AC modulated by two coils placed on the
inner sides of the electromagnet. These coils were driven
by a function generator and amplifier (Kepco BOP 20-
5M) at a range of frequencies, from 23 Hz to 53 Hz in
increments of 10 Hz, and an amplitude of 1.75 Vpp. This
induced an AC magnetization within the samples, whose
amplitude was measured by extracting the induced volt-
age at the modulation frequency with a lock-in amplifier.
For these measurements, the lock-in amplifier was set to
200 µV sensitivity and an integration time constant of 30
ms.

(a) The copper sample (Cu).

(b) The sample holder.

FIG. 4: The sample chamber.
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For resistivity measurements, the function generator and
Kepco amplifier drove the 2 current probes of the sample
at a range of frequencies from 33 Hz to 237 Hz and an
amplitude of 2.5 Vpp, while the 2 voltage probes were
connected to the lock-in amplifier to extract the voltage
across the sample. The lock-in amplifier was set to a
sensitivity of 200 µV and a time constant of 3 s. The
resistivity of the current probes at 110 Kelvin was mea-
sured to be 0.756 Ohms, and the driving current at the
current probes was calculated to be 17.3 µArms.

E. Data collection

The analog outputs of the lock-in amplifier and Gaus
smeter were fed into a National Instruments PCIe-6321
interface card, controlled by a Windows desktop running
our analysis software written in National Instruments
LabView.

IV. METHODOLOGY

A. Meissner effect measurements

In the superconducting state, the Meissner effect im-
plies the samples become perfectly diamagnetic to cancel
the field H, that is:

0 = B = µ0(H +M) =⇒ M

H
= −1. (25)

Detecting this by measuring M directly was impossi-
ble, however, as we could not detect the magnetic field
inside a sample without having a probe inside it. In-
stead, we used Faraday’s Law to measure the magneti-
zation within a time-varying field H(t) = H0e

iωt applied
by the modulation coils, which induced a voltage in the
coils wrapped around the samples:

E ∝ dB

dt
∝ dH

dt
+
dM

dt
=
dH

dt
(1 + χ), χ ≡ dM

dH
(26)

where χ is known as the differential magnetization. Thus

dH

dt
= iωH0e

iωt =⇒ E ∝ eiωt(1 + χ). (27)

Assuming we could cancel the unity term, this implied
measuring the eiω component of E gives the differential
magnetization χ. Cancellation of the unity term was
done to some degree by a counter-wound section of the
inductance wire, but it was not perfect. Therefore we
expected the relationship between the signal from the
lock-in amplifier ε and χ to be an arbitrary linear one:

ε = aχ+ b, a, b ∈ C. (28)

As discussed, in the superconducting state χ should
have been a negative constant. In the regular state, it

should have been around 0 since all of our samples were
very weakly magnetic. Following the GL theory, above
Hc and Hc2 , we expected χ ≈ 0 and below Hc1 and Hc,
we expected χ < 0. A sharp transition in χ should have
occurred at Hc for type I when sweeping from low to
high field and at Hc2 < Hc when sweeping from high
to low. A slow transition should have occurred over
Hc1 < H < Hc2 for type II, perhaps with a feature at
Hc1 corresponding to the introduction/expulsion of flux.
For each sample, we obtained χ(H) measurements by

sweeping H with a triangular ramp of period 100 seconds
and amplitude 1 kGauss.

B. Peak finding

In order to classify the samples, we employed differ-
ent algorithms and techniques to extract critical fields
and temperatures from our raw χ(H) data. Because we
swept the field in both directions, we first isolated a range
of field values to observe. The field values we chose to
isolate correspond to our magnetic field sweeping from
the minimum to maximum value.
After we isolated this range, we performed peak-

finding to find the transition fields Hc, Hc2 for type I
superconductors and Hc1 , Hc2 for type II superconduc-
tors. For type I superconductors, we used:

Hc2 = max
H

{χ(H) : H ≤ 0}, Hc = max
H

{χ(H) : H > 0}.
(29)

We expected Hc > Hc2 in accordance with GL theory.
For type II superconductors, finding the transition

fields was not so simple. Hc1 occurred in the trough of
the χ(H) graph and there were no well-defined points to
extract Hc2 . Moreover, the noise in the system increased
the difficulty of finding a peak. Because of these difficul-
ties, we decided to employ curve-fitting techniques.
To eliminate noise and smoothen out our data, we fit

our χ(H) data to a function of the form

f(x) = A

[
1

1 + ek(x+x0)
+

1

1 + e−k(x−x0)

]
+ f(0) (30)

to extract optimal parameters {A, k, x0, f(0)}.
We then calculated the absolute derivative |df/dx| and

extracted the fields corresponding to the two maximal
values of |df/dx|. Let Hp1 , Hp2 denote these field val-
ues. These peak values defined the ranges of values we
searched to determine Hc1 , Hc2 .
To find Hc1 , we searched the inner range of the deriva-

tive [Hp1
, Hp2

], with boundaries defined by some inter-
nal tolerance tint to extract xc1 ; to find Hc2 values, we
searched the tails (−∞, Hp1

)∪(Hp2
,∞), with boundaries

defined by some external tolerance text to extract xc2 .
We took

xc1 = min
x

{∣∣∣∣df(x)dx

∣∣∣∣− tint = 0 : x ∈ [Hp1 , Hp2 ]

}
(31)
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xc2 = min
x

{∣∣∣∣df(x)dx

∣∣∣∣− tout = 0 : x ∈ (−∞, Hp1) ∪ (Hp2 ,∞)

}
(32)

with

Hc1 = min
H

{|χ(H)− f(xc1)|} , Hc2 = min
H

{|χ(H)− f(xc2)|} .
(33)

In other words, we found values xc1 , xc2 where the deriva-
tive was closest to our tolerances tint, tout and found
Hc1 , Hc2 by finding values where our data χ(H) was clos-
est to the value at our fitted function f(xci).

C. Resistivity measurements

In the superconducting phase, we expected electrical
resistance to drop to near zero. As a result, we had to be
careful about measuring it: any stray resistances from the
probes or wires of the setup could potentially dominate
the resistance of the sample. A four probe measurement
solved this problem by driving all the current for the
measurement through two current probes, and measuring
the voltage across the sample with two voltage probes
and a minuscule amount of current (on the order of 10µA)
through them. Given the current I at the current probes
and the voltage measurement V , the resistance of the
sample was calculated as R = V/I. As discussed in the
experimental setup, we estimated I = 17.3 µArms.

V. RESULTS

A. Critical fields and temperatures

We generated χ(H) plots for all the samples, shown in
Figure 9.

Using multiple χ measurements at different tempera-
tures we were able to determine Hc(T ) for two samples,
Pb2 and In4Bi. Hc(T ) for lead (Pb2) is shown in Figure
5, and Hc(T ) for the 96/4 indium-bismuth alloy is shown
in Figure 6.

B. Sample classification

From Figure 9, we present the following classifications
from our experiment by distinguishing the rapid first or-
der transition of type I from the slow second order tran-
sition of type II in Table II.

We note that for type I superconductors we observe
that Hc2 < Hc for all of our samples, and for type II su-
perconductors, we observe that Hc1 < Hc2 , in alignment
with GL theory.

FIG. 5: Critical magnetic field of lead (Pb2).

FIG. 6: Critical magnetic field of 96/4 indium-bismuth
alloy.

TABLE II: Characterization of samples.

type I type II Non-superconducting
Indium 98/2 indium-bismuth Copper
Lead (Pb0) 96/4 indium-bismuth Teflon (PTFE)
Lead (Pb1)
Lead (Pb2)
Tin
60/40 tin-lead

C. Parameter estimation

We curve-fitted our Hc(T ) plots for lead (Pb2) and the
96/4 indium-bismuth alloy (In4Bi) to Eq. 1, allowing us
to extrapolate estimates of Hc(0), Hc1(0), Hc2(0) and to
calculate κ using the theoretical relations above.
We note that κ for lead could be estimated using Eq.

23, and for In4Bi could be estimated with Eq. 24 if κ≫
1. We were thus able to obtain a value of

κPb2 = 0.697 <
1√
2

(34)
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as expected.
We found no real solutions to the transcendental equa-

tion Eq. 24 for In4Bi, implying κ is near 1. Assuming
Hc1 < Hc, we derived an upper bound using Eq. 23.

1√
2
< κIn4Bi < 2.159. (35)

Additionally, for Pb2 we calculated λ(0), ξ(0) using
Hc(0) and Eq. 21, obtaining the following values:

λPb2(0) = 457 Å, ξPb2(0) = 655 Å. (36)

D. Resistance

We first note that the resistance sample was a type
I superconductor. Because the sample was type I,
we expected a very sharp change in resistance as
the material transitioned from superconducting to non-
superconducting. Thus we opted to take the midpoint
between the minimum and maximum resistance:

Tc = T

(
1

2
(maxR−minR)

)
. (37)

We did this for many different frequencies and plotted
them in Figure 7.

FIG. 7: Resistance of 60/40 tin-lead alloy sample.

We then plotted min R(T ) in Figure 8. We observe
that the data is not what we expected. We should have

seen the resistance increase with frequency, allowing us
to extrapolate to zero frequency to obtain the DC resis-
tance. This discrepancy is due to poor data collection.
The raw data was collected as R(t); in order to gener-
ate temperature plots, we needed to fit a function T (t)
where T is temperature and t time. We did this by man-
ually recording the temperature in ten second intervals
for about two minutes in order to determine how tem-
perature varied by time. Because this data collection
was manual and sparse, there was likely a large amount
of experimental error.

FIG. 8: Superconducting resistance of 60/40 tin-lead
alloy sample.
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(a) Differential magnetization of copper. (b) Differential magnetization of indium.

(c) Differential magnetization of 98/2 indium-bismuth alloy. (d) Differential magnetization of 96/4 indium-bismuth alloy.

(e) Differential magnetization of lead (Pb0). (f) Differential magnetization of lead (Pb1).

(g) Differential magnetization of lead (Pb2). (h) Differential magnetization of Teflon (PTFE).

(i) Differential magnetization of tin. (j) Differential magnetization of 60/40 tin-lead alloy.

FIG. 9: χ(H) at selected temperatures for all 10 Meissner effect samples.
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