
Toward quantum advantage
Quantum variational algorithms
for NP-hard approximations

a thesis presented
by

AustinW. Li
to

The Departments of Physics
and Computer Science

in partial fulfillment of the requirements
for the joint degree of

Bachelor of Arts
in the subject of

Physics and Computer Science

Harvard University
Cambridge, Massachusetts

May 2023



Thesis advisor: Susanne Yelin, Taylor Patti AustinW. Li

Abstract

Quantum computing is a computing paradigm that promises computational

advantage (and in some cases, supremacy) across many domains. Diverse

applications across fields (cryptography, complexity theory, generative chemistry,

finance) make the development and understanding of quantum algorithms

extremely valuable. In this thesis, we consider the application of quantum

computing to NP-hard approximation. Through the use of semidefinite

relaxations of linear program formulations of the maximum graph bisection

problem, and quantum-classical hybrid methods, we show that a novel quantum

variational method (HTAAC-QSDP) provides solution quality equivalent to the

best classical approximation algorithms. We simulate these hybrid circuits using

feed-forward neural networks and determine that the solution quality (cut ratio)

achieved is CQ/CSDP = 0.987 for the training graph and CQ/CSDP ≥ 0.97 for all

other graphs, where CQ is the cut achieved by the quantum variational method

and CSDP is the cut achieved by the classical solver. Our results experimentally

verify the results provided in literature and show that quantum variational

algorithms may be the path towards achieving near-term quantum advantage.
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Chapter 1

Introduction

Quantum computing was first proposed by Richard Feynman in 1982 as a
paradigm of computing that could be used to simulate quantum systems [1]. In
the decades since Feynman’s proposition, quantum computation has developed
into a rich field of research, holding promise for a number of applications that has
motivated the development of new quantum hardware and algorithms. These
quantum algorithms have demonstrated exponential speedups over classical
methods in discrete logarithms and factoring [2], solving linear systems of
equations [3], and (most importantly for Feynman) simulating quantum systems
[4]. The study of quantum information even has applications in drug discovery,
generative chemistry [5], and finance [6], where quantum simulations and
annealers can be used to accurately model molecules and perform portfolio
optimization and credit scoring, respectively.

Modern quantum computing devices often contain 50 to 100 quantum bits
(qubits). These devices are referred to as noisy intermediate-scale quantum
(NISQ) devices and allow us to achieve “quantum supremacy” [7],
outperforming the best classical supercomputer for often contrived mathematical
tasks [8, 9]. However, the promise of quantum speedup for practical
applications, known as quantum advantage, has yet to be realized. Variational
quantum algorithms (VQAs) have emerged as a leading strategy to achieve
quantum advantage using NISQ devices. VQAs are quantum-classical hybrid
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machine learning methods that combine parameterized quantum circuits with
classical optimization methods like stochastic gradient descent or neural
networks, making use of optimization-based or learning-based approaches to
solve problems [10]. Variational methods have found widespread applications in
quantum optimization protocols like adiabatic computation [11–13], annealing
[14, 15], and the Quantum Approximate Optimization Algorithm (QAOA)
[16]. While VQAs may be the key for achieving near-term quantum advantage,
they still face challenges in trainability, accuracy, and efficiency [10].

Semidefinite programs (SDPs) are a form of convex optimization where an
objective is extremized over the set of symmetric positive semidefinite matrices
[17]. While SDPs have a variety of applications spanning computer hardware
design and networking [18, 19], we are most interested in using SDPs to
approximate difficult combinatorial problems, including NP-hard problems
[20, 21]. In many cases, optimization with SDPs have performance guarantees in
the form of approximation ratios and represent a compromise between
computational complexity and solution quality [22]. In particular, Goemans and
Williamson show that SDP relaxations provide performance guarantees for the
maximum cut (MaxCut), maximum bisection (MaxBisection), and maximum
2-satisfiability (Max2SAT) problems [20]. Moreover, many quantum SDP
algorithms (QSDPs) have been devised over the years [23–27], that provide a
quadratic speedup on the number of variables and constraints [28].

Variational methods have recently been proposed for solving QSDPs [29, 30].
One new approach uses Hadamard Test objective functions and Approximate
Amplitude Constraints (HTAAC-QSDP), which uses n+ 1 qubits, a constant
number of quantummeasurements, andO(n2) classical calculations to solve
SDPs withN = 2n variables [31]. Patti et al. demonstrate the feasibility of this
novel method by implementing a quantum analog of the classical
Goemans-Williamson algorithm for MaxCut [32]. In particular, they find
performance and solution quality equivalent to the best classical SDPmethods
methods for MaxCut. Furthermore, Patti et al. show extensions and applications
of the method to additional problems like theMaxBisection problem.
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In this thesis, we consider an extension of HTAAC-QSDP for other problems
where Goemans-Williamson provides approximation guarantees. We
experimentally test the feasibility of HTAAC-QSDP for MaxBisection and show
that HTAAC-QSDP indeed provides the same performance guarantee and
solution quality as the best known classical SDP solvers.
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Chapter 2

Background

In this section, we introduce fundamental concepts of quantum computing,
convex optimization, and variational quantum algorithms.

2.1 Quantum computation

2.1.1 Dirac notation

We use bra-ket, or Dirac, notation throughout the thesis. We provide a brief
introduction here. The ket is of the form |v〉, which denotes a vector v in a
complex vector space V. This represents some state of a quantum system. The bra
is of the form 〈v| and is the dual vector to |v〉. A dual vector is a function
f : V → C that maps each vector to a complex number. We can conveniently
think of |v〉 as a column vector, and 〈v| as the row vector that is the Hermitian
conjugate (adjoint) of |v〉, that is, 〈v| ≡ |v〉†.

We let 〈v|w〉 denote the inner product, |w〉〈v| denote the outer product, and
|vw〉 = |v〉 ⊗ |w〉 denote the tensor product. One familiar inner product is the
dot product or scalar product; in this case, 〈v|w〉 can be interpreted as the
magnitude of the projection of |w〉 onto |v〉. An outer product |w〉〈v| is a linear
operator from V toW. The action is defined by

(|w〉〈v|)|v′〉 ≡ |w〉〈v|v′〉 = 〈v|v′〉|w〉, (2.1)
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and thus the outer product can be interpreted as an operator that acts on |v′〉 or
the result of multiplying |w〉 by a scalar 〈v|v′〉 [33]. The tensor product has the
following interesting properties. If V,W are Hilbert spaces with dimensionm, n
respectively, then V⊗W is anmn-dimensional vector space with elements that
are linear combinations of tensor products |v〉 ⊗ |w〉 of elements
|v〉 ∈ V, |w〉 ∈ W. We often write |vw〉 = |v〉 ⊗ |w〉. We note that if |i〉, |j〉 are
orthonormal bases for V,W, then |i〉 ⊗ |j〉 is a basis for V⊗W [33]. Thus, tensor
product states represent states of multiple combined systems.

2.1.2 Quantum bits

The quantum bit, or qubit, is the fundamental unit of quantum information.
Unlike classical bits, which can either be in state 0 or 1, qubits can be in any linear
combination, or superposition, of states. For example, a one-qubit state has a
general form

|ψ〉 = α|0〉+ β|1〉, (2.2)

for α, β ∈ C and where |0〉, |1〉 form an orthonormal basis of two-dimensional
Hilbert space. The canonical choice of basis is the standard basis. We call
{|0〉, |1〉} the computational basis. When we measure a qubit in the
computational basis, we get 0with probability |α|2 and 1with probability |β|2,
with |α|2 + |β|2 = 1. This is the normalization condition. Geometrically, then, a
one-qubit state is a unit vector in two-dimensional Hilbert space [33].

For multiple qubits, we can turn again to the classical analog. Two classical bits
occupy one of the following four states: 00, 01, 10, 11. Likewise, a two-qubit
system has four computational basis states, denoted |00〉, |01〉, |10〉, |11〉. A pair of
qubits can exist in any superposition of these four states

|ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (2.3)

with
∑

x∈{0,1}2 |αx|2 = 1 and αx ∈ C for x ∈ {0, 1}2. In general , we can consider
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a system of n qubits with the computational basis states of the system of the form
|x1x2 . . . xn〉, xi ∈ {0, 1}∀i, and the quantum state of this system specified by 2n

coefficients, or amplitudes. Thus, an n-qubit state is a unit vector in
2n-dimensional Hilbert space [33].

2.1.3 Single qubit gates

Changes to quantum states are described by quantum computation. Analogous
to a classical computer, a quantum computer is built from a quantum circuit
containing wires and quantum gates. Wires carry information in the circuit and
logic gates performmanipulations on the information. The first non-trivial gate is
the NOT gate, defined by its truth table 0 7→ 1, 1 7→ 0. The quantumNOT gate
can be represented by the matrix

X ≡

[
0 1
1 0

]
(2.4)

where we observe that X|0〉 = |1〉,X|1〉 = |0〉, as desired. We note that
X(α|0〉+ β|1〉) = α|1〉+ β|0〉, that is, the NOT gate acts linearly on quantum
states. This is a general (and nice) property of quantummechanics. We note that
any transformation on a quantum state or qubit must preserve the normalization
condition that all quantum states have unit norm. Quantum gates, then, must be
unitary, that isU†U = Iwhere I is the identity. It turns out that this is the only
constraint on quantum gates [33].

The following are other non-trivial single-qubit gates

Y ≡

[
0 i
−i 0

]
, Z ≡

[
1 0
0 −1

]
, H ≡ 1√

2

[
1 1
1 −1

]
. (2.5)

X, Y,Z are known as the Pauli gates andH is the Hadamard gate. We can denote
the three Pauli gates using σx, σy, σz, respectively. The X, Y,Z gates represent
rotations around different axes of a Bloch sphere, a geometrical representation of
all possible qubit states. X,Z are particularly useful: X represents a bit-flip and Z
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|A〉 • |A〉
|B〉 |A⊕ B〉

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Figure 2.1.1: Circuit and matrix representation of controlled-NOT, UCN,
written with respect to the amplitudes for |00〉, |01〉, |10〉, |11〉, in that order.
Here, |A〉 is the control qubit and |B〉 is the target qubit.

represents a phase-flip, leaving |0〉 unchanged and flipping the sign of |1〉. H is
described as the “square-root NOT” gate and rotates |0〉 to 1

2(|0〉+ |1〉) and |1〉 to
1
2(|0〉 − |1〉) [33]. The Pauli gates are related by−iXYZ = I. One can verify that
X†X = Y†Y = Z†Z = H†H = I.

2.1.4 Multiple qubit gates

The prototypical multiple qubit gate is the controlled-NOT, or CNOT, gate. Let
UCN denote the matrix representation of the gate. The desired behavior of CNOT
is as follows:

UCN|00〉 7→ |00〉, UCN|01〉 7→ |01〉, UCN|10〉 7→ |11〉, UCN|11〉 7→ |10〉.
(2.6)

We call the first qubit the control qubit and the second qubit the target qubit. We
observe that if the control qubit is 0, the target qubit is left alone. If the control
qubit is 1, then the target qubit is flipped. In general, any qubit can be the control
qubit and any other qubit or set of qubits can be the targets. We can conveniently
think of the CNOT gate as a generalized XOR. It takes the state
UCN|a, b〉 → |a, a⊕ b〉where⊕ is bitwise addition modulo two. The circuit and
matrix representation of the controlled-NOT,UCN, is given by Fig. 2.1.1. While
there are many more quantum gates, the prototypical CNOT and single qubit
gates are prototypes for all other gates— any multiple qubit logic gate can be
composed from CNOT and single qubit gates. This universality is the quantum

7



parallel of the universality of the classical NAND gate [33].
A natural generalization of the controlled-NOT gate is a controlled-U gate,

whereU is any unitary matrix acting on some number n of qubits. Like the
controlled-NOT, this family of gates contain a single control qubit and n target
qubits. If the control qubit is 0, nothing happens to the target qubits, if the
control qubit is 1, thenU is applied to the target qubits. Thus, a controlled-NOT
is simply a controlled-X gate [33].

2.1.5 Quantummeasurement

Recall that measurement of α|0〉+ β|1〉 in the {|0〉, |1〉} basis yields 0 or 1 with
probability |α|2, |β|2, respectively. We can, however, choose to make
measurements in a different basis. Consider the basis
|+〉 ≡ 1√

2(|0〉+ |1〉), |−〉 ≡ 1√
2(|0〉 − |1〉). We can re-express

|ψ〉 = α|0〉+ β|1〉 = α
|+〉+ |−〉√

2
+ β

|+〉 − |−〉√
2

=
α + β√

2
|+〉+ α − β√

2
|−〉

(2.7)

and thus measurement with respect to this new basis {|+〉, |−〉} yields+with
probability |α + β|2/2 and−with probability |α − β|2/2, with
post-measurement states |+〉, |−〉 respectively.

More formally, quantummeasurements are projective measurements. Following
the definitions provided by Chuang and Nielsen [33], a projective measurement
is an observable M, a Hermitian operator on the state space of the system being
observed. The observable has a spectral decomposition

M =
∑
m

mΠm (2.8)

whereΠm is the projector onto the eigenspace ofMwith eigenvaluem. The
possible outcomes of measurement correspond to the eigenvaluesm of the
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observable. Upon measuring state |ψ〉, the probability of getting resultm is

p(m) = 〈ψ|Πm|ψ〉 = tr(Πmρ). (2.9)

where ρ = |ψ〉〈ψ| is the density operator. Here, we use the cyclic property of the
trace. Given outcomem occurred, the state of the quantum system after
measurement is

|ψ′〉 = Πm|ψ〉√
p(m)

, (2.10)

where we see that |ψ′〉 is renormalized by 1/
√

p(m). Quantummeasurement,
then, can be described by a collection {Mm} of Hermitian measurement
operators that satisfy completeness∑

m

M†
mMm = I =⇒

∑
m

p(m) = 1 (2.11)

and orthogonality

MmMm′ = δmm′Mm (2.12)

where δmm′ is the Kronecker delta [33].
One simple example is measurement on a single qubit with two outcomes

defined by measurement operatorsM0 = |0〉〈0|,M1 = |1〉〈1|. Note
M2

0 = M0,M2
1 = M1 andM†

0M0 +M†
1M1 = M0 +M1 = I. Suppose we measure

|ψ〉 = α|0〉+ β|1〉. Then the probability of outcome 0 is

p(0) = 〈ψ|M†
0M0|ψ〉 = 〈ψ|M0|ψ〉 = 〈ψ|0〉〈0|ψ〉 = |a|2 (2.13)

and p(1) = |b|2 similarly.
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2.1.6 Quantum circuits

Quantum circuits are read left-to-right. Each line in the circuit represents a wire
in the quantum circuit. The wire may correspond to the passage of time or a
physical particle like a photon moving through space; it does not necessarily
represent a wire. These wires connect quantum logic gates like the ones discussed
in previous sections. Measurement is represented by a “meter” symbol; this
operation converts a single qubit state |ψ〉 = α|0〉+ β|1〉 into a probabilistic
classical bit (which is drawn as a double-line wire). For controlled-U gates, the
control qubit is denoted by a line with the black dot [33]. Some examples of
quantum circuit diagrams for these gates are given in Fig. 2.1.2. It is convention
to assume that state input to circuit is the trivial computational basis state |0〉⊗n,
where⊗n denotes taking a tensor product of a state with itself n times [33].

Moreover, we note that quantum circuits are acyclic—we do not allow
feedback from one part of the circuit to another, and classical operations like
FANIN and FANOUT are not allowed in quantum circuits [33].

2.2 Semidefinite programs

Convex optimization techniques have long been applied in quantum computing
from quantum error correction [34] to proving quantum complexity results [35].
The subfield of convex optimization we particularly care about is semidefinite

•

U

(a)

• •
X

(b)

|ψ〉 




(c)

Figure 2.1.2: 2.1.2a Controlled-U gate. 2.1.2b Two representations of the
controlled-NOT gate where the top wire contains the target qubit. 2.1.2c
Quantum circuit symbol for measurement.
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programming. These programming methods are often integer program
relaxations, where integer variable objective functions are recast using continuous
vector variables [31, 36]. SDPs are useful for solving a broad range of problems,
including approximation algorithms for combinatorial optimization [37], control
theory [38], and sum of squares [39]. Quantum information problems can be
similarly recast using SDPs, including state discrimination [40, 41], upper
bounds on quantum channel capacity [42, 43], and self-testing [44]. Generally,
SDPs can be solved efficiently in time polynomial in the dimension of the input
matrices via classical methods like the interior-point method [29, 45].

We note that although SDPs can be solved efficiently, as the dimension of the
input matrices increase, many first-order and second-order methods require
gradient calculations at each iteration and require significant computational
overhead. Brandão et al. recently proposed a quantum algorithm that provides a
quadratic speedup over the classical Arora-Kale algorithm [26, 46]. Following
this result, additional quantum algorithms for solving SDPs were developed
[23, 25]. Many of these algorithms, however, require fault-tolerant quantum
computers to realize these speedups; thus, the design of quantum SDP solvers on
NISQ devices is imperative [29].

2.2.1 Formalism

More formally, a semidefinite program is an optimization problem where the goal
is to optimize a linear function over the intersection of the positive semidefinite
cone with an affine space. SDPs are extensions of linear programs (LPs), where
vector inequalities are promoted to matrix inequalities. The standard form of an
N-variable,M-constraint semidefinite program is [17]

min
X∈S+

〈W,X〉

s.t. 〈Aμ,X〉 = bμ, μ ≤ M

X � 0

(2.14)
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whereW ∈ S+
N encodes the optimization problem, Aμ ∈ S+

N (bμ) are matrices
(scalars) that encode the problem constraints, and S+

N denotes the set ofN× N
semidefinite matrices. 〈A,B〉 denotes the trace inner product

〈A,B〉 = trA⊺B =
N∑
i,j

AijBij. (2.15)

2.2.2 Goemans-Williamson algorithm

TheGoemans-Williamson algorithm is a classical NP-hard approximation
algorithm. Professors Michel X. Goemans at theMassachussetts Institute of
Technology andDavid P.Williamson at Cornell University significantly advanced
the theory of approximation algorithms [20]. Prior to their developments,
approximation algorithms largely depended on comparing heuristic solutions to
linear program relaxations. Goemans andWilliamson’s new idea is to use
semidefinite programs as relaxations. Briefly, their idea is to recast these
problems as SDPs. They then find solutions to these SDPs and use a randomized
rounding heuristic to obtain approximations for problems like MaxCut. The
randomized rounding heuristic chooses a random hyperplane through the origin,
and partitions the vertex set V according to which side of the hyperplane they fall.
Solutions obtained by Goemans-Williamson have performance guarantees in the
form of approximation ratios, yielding 0.878-approximations for MaxCut and
Max2Sat [20]. Later work extends Goemans andWilliamson’s algorithm to other
problems, includingMax-k-Cut, MaxBisection [47], andMax2Sat [32].

We use classical cut values obtained by the Goemans-Williamson algorithm to
determine the performance and solution quality of the cut values achieved by the
quantum variational algorithm.

2.3 Variational quantum algorithms

Variational quantum algorithms are an important class of NISQ algorithms.
These are hybrid quantum-classical algorithms characterized by a classical
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computer (used for optimization) that can call a quantum subroutine for tasks
that it cannot efficiently solve [29]. VQAs have been proposed for certain
computational tasks; some well-studied applications include the Variational
Quantum Eigensolver (VQE) [10, 30] and QAOA [16].

2.3.1 Formalism

VQAs are designed for solving optimization tasks with an objective or cost
function. Without loss of generality, the cost function can be expressed in the
form

C(θ) = f({ρk}, {Ok},U(θ)) (2.16)

where f is some function,U(θ) is a parameterized circuit, θ are trainable discrete
or continuous parameters, {ρk} are input states from a (possible) training set,
{Ok} are a set of observables (Hermitian operators). It is useful to express the
cost in the form

C(θ) =
∑
k

fktr
[
OkU(θ)ρkU

†(θ)
]

(2.17)

for problem-specific functions {fk} [10]. The objective is given by

argmin
θ

C(θ). (2.18)

Wemake the following assumptions about the cost function: it is a faithful
encoding of the problem, that is, an extremum corresponds to a solution; smaller
cost values indicates better solution quality; the parameters θ are trainable, that
is, they can be efficiently optimized [10].

Another important component of a VQA is the variational ansatz. The
parameters θ can be encoded in a parameterized quantum circuitU(θ) to be used
as the variational ansatz. U(θ) is applied to the input state of a quantum circuit,
typically |0〉⊗n. The form of an ansatz determines the parameters θ, and hence
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how they can be trained to minimize C(θ). The specific structure of an ansatz
depends on the task, however, there exist problem-agnostic ansatze that can be
used when we do not know the structure of the problem a priori [10, 29]. U(θ)
can be generically expressed as a product of L sequentially applied unitaries

U(θ) = UL(θL) · · ·U2(θ2)U1(θ1), Uℓ(θℓ) =
∏
m

e−iθmHmWm (2.19)

whereWm is an unparameterized unitary,Hm is a Hermitian operator, and θℓ is the
ℓ-th element in θ [29]. One such generic variational ansatz is used in our
experiments withMaxBisection.

After specifying a cost function and ansatz, we train parameters θ to solve the
optimization problem. It is possible to analytically evaluate the cost function
gradient. One training technique that employs partial derivatives is the
parameter-shift rule [10]. In this paper, however, we consider stochastic gradient
descent (SGD)methods. One SGDmethod imported from classical machine
learning software is Adam [48], which adapts the size of steps taken during
optimization to allow for more efficient and precise solutions [10]. This is what
we use for MaxBisection.

We note that when the dimension of the input is large, the evaluation of
expectation values of observables is computationally intractable with classical
algorithms [10, 29]. VQAs attempt to circumvent this dimensionality constraint
by reducing the optimization to a problem-specific subspace. Specifically, VQAs
utilize the parameterized quantum circuitU(θ) to explore a subspace of the input
space [29].

2.3.2 Classical parallels

We note that optimizing the parameters θ of a generic variational ansatz in a
quantum circuit is analogous to optimizing the weights of a generic neural
network with tunable hyperparameters. Moreover, in VQAs, the protocol for
optimization is as follows: each iteration of the (hybrid) feedback loop uses a
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quantum computer to efficiently estimate the cost (or gradients); the information
is given to a classical computer that uses classical methods to optimize
parameters θ. Once a termination condition is met, the VQA outputs an estimate
of the solution to the problem.

Because of these properties, we can simulate VQAs on classical computers,
where we send an input stateU(θ)|0〉⊗n, where n is the number of qubits and
U(θ) is the variational ansatz, into a feed-forward neural network to optimize the
parameters/weights θ. Optimization is done via stochastic gradient descent
using Adam. The termination condition is defined by the number of epochs or a
minimum threshold value on the cost.
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Chapter 3

Simulations and experiments

In this section, we introduce HTAAC-QSDP and its application to
MaxBisection. We discuss methods, which include data and graph generation,
simulation and parameters, and experiments.

3.0.1 The Hadamard test

TheHadamard test is a quantum computing subroutine for arbitrary n-qubit
states |ψ〉 and n-qubit unitariesU. It is a method used to create a random variable
with expected value Re〈ψ|U|ψ〉 or Im〈ψ|U|ψ〉 (depending on the initial state
configuration). We use the Hadamard test to achieve the latter. To perform a
Hadamard test, we first prepare the state |ψ〉 ⊗ 1√

2 (|0〉 − i|1〉), where the n+ 1th
qubit is an ancillary qubit and |ψ〉 is the quantum state of interest. We apply a
controlled-U from the n+ 1th qubit to |ψ〉 to obtain

1√
2
(|ψ〉 ⊗ |0〉 − iU|ψ〉 ⊗ |1〉) , (3.1)

followed by a Hadamard gate on the n+ 1th qubit, yielding

1
2
((I− iU)|ψ〉 ⊗ |0〉+ (I+ iU)|ψ〉 ⊗ |1〉) . (3.2)
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|ψ〉 / U

|0〉 H • H 




Figure 3.0.1: Circuit for the Hadamard test starting with state |ψ〉 ⊗ |0〉.

Projective measurement with respect to the {|0〉, |1〉} basis yields 0, 1with
respective probabilities given by

p(0) =
1
4
(
2− i〈ψ|U|ψ〉+ i〈ψ|U†|ψ〉

)
,

p(1) =
1
4
(
2+ i〈ψ|U|ψ〉 − i〈ψ|U†|ψ〉

)
.

(3.3)

Calculating the expected value of σz, we see that

〈σn+1
z 〉 = −i

〈ψ|U|ψ〉 − 〈ψ|U†|ψ〉
2

= Im〈ψ|U|ψ〉. (3.4)

Thus, the Hadamard test allows the imaginary component of 〈ψ|U|ψ〉 to be
obtained by a single expectation value 〈σn+1

z 〉where we take an expectation of σz
on the n+ 1th qubit. To obtain a random variable with expectation Re〈ψ|U|ψ〉,
we follow the procedure but start with |ψ〉 ⊗ 1√

2(|0〉+ |1〉). The circuit for this
process is given in Fig. 3.0.1.

3.1 Hadamard test objective with approximate amplitude

constraints

A novel variational quantum algorithm for solving quantum semidefinite
programs (QSDPs) proposed by Patti et al. uses Hadamard Test objective
functions and Approximate Amplitude Constraints (HTAAC-QSDP) [31].

Themotivation for such a method is as follows: for many worst-case problems
(problems with a large number of constraints like MaxCut or MaxBisection),
SDPmethods may involve the estimation of up toO(2n) observables per epoch.
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HTAAC-QSDP instead uses n+ 1 qubits, a constant number of quantum
measurements, andO(n2) classical calculations to solve SDPs with up toN = 2n

variables. In some cases (high-constraint problems), this provides an exponential
speedup in the number of expectation values. We provide a brief overview in the
following sections [31].

3.1.1 Hadamard test objective

In quantum analogy to Eq. 2.14, we minimize 〈W,X〉 over the n-qubit density
matrices ρ = |ψ〉〈ψ|. Following from Patti et al. [31], we define |ψ〉 = UV|0〉⊗n

whereUV is the variational quantum circuit and |0〉⊗n the input. This yields an
objective function

min
ρ

〈W, ρ〉 = min 〈ψ|W|ψ〉. (3.5)

We can encode the objective matrixW as the imaginary part of an n-qubit unitary
UW = exp iαWwhere α is a constant scalar. We note thatUW is unitary; one can
check thatU†

WUW = I. Following from the above, we can use the Hadamard test
to calculate the objective term in the loss function

〈σz〉W = Im〈ψ|UW|ψ〉 = Im〈UW, ρ〉. (3.6)

Thus, we can extremize theN-dimensional objective with the estimation of a
single expectation value. We note that the second equality only holds for pure
states |ψ〉.

3.1.2 Approximate amplitude constraints

Approximate amplitude constraints are proposed by Patti et al. to reduce the
number of expectation values required to enforce QSDP constraints [31]. When
we promote the SDP objective in Eq. 2.14 to an objective of the same form as in
Eq. 3.5, our classical constraints must also be promoted to constraints on density
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matrices ρ. ForMaxCut andMaxBisection, one of these constraints take the form

ρii = N−1, ∀i ≤ N, (3.7)

which enforces that all vertices are equally represented in the solution. Enforcing
theM = N = 2n amplitude constraints ρii = N−1 requires estimation of all Pauli
strings with k ≤ n Pauli-z operators [31]. Full enforcement requires∑n

k=1

(n
k

)
= N− 1 = O(2n) expectation values. To reduce this large overhead,

we consider the set of
(n
1

)
+
(n
2

)
= O(n2) Pauli strings length k ≤ 2

〈σaz, ρ〉 = 0, ∀a ≤ n

〈σazσbz, ρ〉 = 0, ∀b 6= a, a, b ≤ n
(3.8)

as constraints for the n-qubit output state |ψ〉. This set of constraints
approximates (and strongly) enforces the same set ofN constraints of Eq. 3.7
[31]. Briefly, the k = 1 constraints ensure that each qubit is in equal
superposition of |0〉, |1〉 and k = 2 constraints prevent 2-qubit correlations that
would otherwise satisfy k = 1 constraints [31]. One example that Patti et al.
provide is the Bell state |Φ+〉 ≡ 1√

2(|00〉+ |11〉), which has zero amplitude for
states |01〉, |10〉. This state should be disallowed. |Φ+〉 satisfies the k = 1
constraints 〈σ1z, ρ〉 = 0, 〈σ1z, ρ〉 = 0, but violates the k = 2 constraint
〈σ1zσ2z, ρ〉 = 0.

Thus, HTAAC-QSDP enforces theM = N = 2n amplitude constraints with
the estimation of a polynomial number (O(n2)) of Pauli-z strings.

3.2 MaxBisection

Themaximum graph bisection problem is a well-known graph partition problem.
MaxBisection is an extension of the maximum cut problem and is known to be
NP-complete via a reduction fromMaxCut [49]. The problem is specified by the
following. Given a weighted graphG = (V, E)with vertices V and edges E, a cut
ofG is a partition of the vertices into two disjoint subsets S,V− Swith
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S ∩ V− S = ∅. The size of the cut is the number of edges connecting S,V− S;
themaximum cut is the cut with the greatest weight. We also require that the cut
bisects G, that is, |S| = |V− S|. Thus the maximum bisection problem can be
formulated as follows: given such a graphG = (V, E), find this maximum
bisection of the graph [49].

3.2.1 Problem specification

We consider an instance of MaxBisection problem on graphG = (V, E)withN
vertices. Let vi, vj ∈ V denote two arbitrary vertices. LetW encode the
N(N− 1)/2 non-zero edge weights in entriesWij. Note thatWii = 0 because
there are no self-edges. The optimization problem has standard form

max
1
2

∑
i<j

Wij(1− vivj)

s.t.
∑
j

vj = 0

vi = ±1, ∀i ≤ N,

(3.9)

[22]. The SDP relaxation via the Goemans-Williamson algorithm is given by

min
X∈S+

〈W,X〉

s.t.
∑
i,j

Xij ≤ −N/2

Xii = 1, ∀i ≤ N

(3.10)

[47]. As described by Eq. 3.5, we can substitute the classical positive semidefinite
matrix Xwith the quantum density operator ρ. The solution of the SDP is stored
in |ψ〉where vi = sign(ψ i). Recall evaluation of the objective can be done with
the Hadamard test [31]. Patti et al. show that the constraint Xii = 1 is equivalent
to ρii = 1/2n = N−1. Note that Xii = 1 ensures that all vertices are in the
solution; the equivalent density operator formulation ensures that all states have
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the same amplitude |ψ i|, which means that no vertices are disproportionately
favored. Moreover, we note that the first constraint of Eq. 3.10 requires half of the
variables in X be partitioned equally. Following from the above, we can promote
and rewrite Eq. 3.10 as

min
X∈S+

〈W, ρ〉

s.t.
∑
i,j

ρij ≤ −N/2

ρii = N−1, ∀i ≤ N

(3.11)

where we note that the second constraint can be enforced by the approximate
amplitude constraints given in Eq. 3.8. Patti et al. hold that the first constraint of
Eq. 3.11 can be enforced with the Pauli-x string constraints

〈Ox〉 = 0 (3.12)

whereOx is any Pauli string of σx operators [31].

3.2.2 Algorithm

Following Patti et al. [31], we encode theN vertices into n basis vectors where
n = supn{n : N ≤ 2n}. This allows us to encode vertices into a computational
basis from which we construct a quantum state |ψ〉. We use the objectiveW as a
generator of the unitaryUW where

UW = exp iαW = I+
iα
1!
W− α2

2!
W2 − iα3

3!
W3 +O(W4). (3.13)

We use the Hadamard test to estimate the objective 〈σn+1
z 〉. We also use a

population balancing unitaryUP to address systematic skew due to unequal
distribution of graph edges among quantum states. This systematic skew
undermines Eq. 3.7 [31]. We implement this on |ψ〉 via a second Hadamard test,
which adds the loss term 〈σn+1

z 〉P = Im〈ψ|UP|ψ〉. We define the population
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balancing unitary

UP ≡ exp iβP, Pii = −

Pmax −
∑
j

|wij|

 (3.14)

where β is an adjustable hyperparameter and Pmax is the maximummagnitude of
edge weights for any vertex [31]. We note that P is diagonal. UP balances state
populations by promoting states that are less represented or absent from the
objective. In our simulations, the strength of our population balancing term is
regularized via a hyperparameter r.

Thus, combining the Hadamard test objective, approximate amplitude
constraints in Eq. 3.7, and the Pauli-x string constraint in Eq. 3.12, we can use
gradient descent-based penalty methods to find a solution to the following loss
function [50], given by

L(t) = 〈σn+1
z 〉W,t +

1
r
〈σn+1

z 〉P,t

+ λZ

∑
j

〈σ jz, ρt〉
2 +

∑
k ̸=j

〈σ jzσkz, ρt〉
2

+ λX

∑
j

〈σ jx, ρt〉
2

 . (3.15)

Here, we impose constraints by encoding them as penalty terms to our objective.
An algorithm outline is as follows. We prepare a generic variational ansatzUV

and initial state |ψ〉 = UV(t)|0〉⊗n. At each time step t, we prepare ρt = |ψt〉〈ψt|
on a variational quantum computer, conduct Hadamard tests and measurements,
and optimize our variational ansatz parameters θ via backpropagation in a
classical feed-forward neural network. We note r is a regularization
hyperparameter that regularizes the strength of the population balancing term.
λZ, λX are the penalty hyperparameters on the Pauli-z (approximate amplitude)
and Pauli-x (bit-flip) constraints, respectively. For simplicity, we have chosen
time-constant λZ, λX values, although we note that λZ, λX can also be
time-dependent. The pseudocode for the algorithm is given in Alg. 3.2.1.
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Data: Optimization matrix W, Hadamard coefficients α, β, learning rate η,
regularization r, circuit depth d, penalties λZ, λX, number of epochs
T.

Initialize variational quantum circuit UV
for t in range: T
do

|ψt〉 ⊗ |0〉 = UV(t)|0〉⊗n ⊗ |0〉
Hadamard test (phase α) UW → 〈σn+1

z 〉W,t
Hadamard test (phase β) UP → 〈σn+1

z 〉P,t
Measure 〈σ jzρt〉2, 〈σ

j
zσkz, ρt〉2, 〈Ox〉2

Calculate L(t) = 〈σn+1
z 〉W,t +

1
r〈σ

n+1
z 〉P,t +

λZ
[∑

j〈σ
j
z, ρt〉2 +

∑
k̸=j〈σ

j
zσkz, ρt〉2

]
+ λX

[∑
j〈σ

j
x, ρt〉2

]
Backpropagate η∇L(t) : UV(t) → UV(t+ 1) and update parameters θ

end
Result: SDP MaxBisection vertex solution |ψT〉, sign(|ψT〉) = [v1, · · · , vn]⊺.

Figure 3.2.1: Quantum implementation of Goemans-Williamson algo-
rithm for MaxBisection with HTAAC-QSDP.

We note that Eq. 3.15 indicates we only use Pauli-x strings that only contain
one σx. We later empirically justify this decision. More specifically, we show that
in fact the addition of longer Pauli-x strings does not affect solution quality, but
rather causes stronger violation of our bit-flip constraints 〈OX〉 = 0.

3.3 Methods

We show the feasibility and solution quality of HTAAC-QSDP onMaxBisection
by comparing the cut size achieved by HTAAC-QSDP to cuts produced by a
classical SDP solver. Let CQ be the cut achieved by HTAAC-QSDP and CSDP be
the cut achieved by the classical SDPmethod (Goemans-Williamson). We want
to show that CQ/CSDP ≈ 1, that is, the QSDP and classical solvers converge to
the same cut size. By doing this, we show the two methods have equivalent
solution quality.
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3.3.1 Data and graph selection

A repository of graphs for a variety of graph partitioning problems was generously
provided by the Graph Partitioning Archive, which is compiled and maintained
by Professor Chris Walshaw at the University of Greenwich [51]. The repository
contains the best known performance values and associated algorithms for 34
graphs, including SDPmethods. Initial simulations were conducted on the two
smallest graphs, but graph size (O(103) vertices andO(105) edges) and
computational limitations made large-scale simulations time-inefficient.

We instead generate Erdös-Rényi, or binomial, graphs using the NetworkX
package [52]. We would like to thank Robin Alexandra Brown, a Ph.D. candidate
at Stanford University, for her help with graph generation. More specifically, we
generate graphsG(n, p)with n nodes, where nodes are connected with
probability p [53, 54]. The expected number of edges in binomial graphs is
〈|E|〉 =

(n
2

)
p. We choose n = 32, p = 0.8 as our parameters and generate ten

graphs, labeled 000 to 009. Given these parameters, we expect (on average) each
graph to contain 396.8 edges. One example of such a graph generated with our
desired parameters is given by Fig. 3.3.1. We then produce SDP solutions on the
graphs with Goemans-Williamson using the CVXPY package [55, 56]. We
compare our HTAAC-QSDP cut values to these classical cut values. Pseudocode
for generating classical SDP solutions is provided in Alg. 3.3.2. We use graph 000
for training and graphs 001 to 009 for testing.

3.3.2 Simulation specification and parameters

We run a simulation of Alg. 3.2.1 using the Tensorly-Quantum simulator
[57, 58]. Our chosen circuit ansatzUV is comprised of d repetitions of two
variationally parameterized Y gates interleaved with CNOT gates. We let d
denote the circuit depth or the number of gate repetitions. The CNOT gates
alternate between odd-even and even-odd qubit control. This is the same ansatz
used by Patti et al. [31]. Optimization by stochastic gradient descent is

24



Figure 3.3.1: Example Erdös-Rényi graph with n = 32, p = 0.8 generated
using the NetworkX package. These are the types of graphs we use to test
HTAAC-QSDP.

Data: Number of nodes n, edge probability p, number of trials N
Generate Erdös-Rényi graph G(n, p)
Solve classical SDP for MaxBisection in CVXPY to obtain SDP solution
for i in range: N
do

Perform randomized rounding to generate cut on SDP solution, store
cut size

Balance cut to produce bisection cut, store cut size
end
Result: MaxBisection cut value and graph G(n, p).

Figure 3.3.2: Goemans-Williamson algorithm for MaxBisection.

conducted using the Adam optimizer [48].
All graph and algorithm hyperparameters (α, β, learning rate η,UV circuit

depth d, penalization base values cb, regularization r) are allowed to vary freely
with the exception of the penalty parameters λZ, λX. These are defined by

λi ≡
cbα
Ni

, i ∈ {Z,X} (3.16)

where cb is a hyperparameter that defines the coefficient base value for penalties

25



andNZ,NX are the number of σz, σx string constraints, respectively. We note that
we require 2n NZ and at most 2n NX constraints to fully enforce all constraints,
however, we show that we can approximate these constraints using approximate
amplitude constraints and first-order bit-flip constraints, respectively.

3.3.3 Hyperparameter search

Because we have many parameters that are allowed to vary, we perform a manual
hyperparameter search to find the best-performing parameters for our graphs.
We conduct hyperparameter search on graph 000 and test the performance of
optimal parameters on graphs 001 through 009.

3.3.4 Optimization

Early simulations of HTAAC-QSDP for MaxBisection required many hours. To
speed up simulation time and reduce computational overhead, the objective and
constraints are vectorized. This decreases computation time by leveraging the
implementation of NumPy operations in C [59]. Moreover, we utilize sparse
tensors for the objectiveUW. Sparse tensors enable efficient storage and
processing of tensors that contain many empty values. We use PyTorch
implementations of sparse matrices [60]. With these optimizations, simulations
experience speedups that are many orders of magnitude faster than the
unoptimized procedure.

26



Chapter 4

Results and analysis

In this chapter, we discuss main results and analysis.

4.1 First-orderOx constraints

We run Alg. 3.2.1 on subsets of all 31 〈Ox〉 constraints on graph 000. Recall that
we run experiments with n = 5 qubits (graphs generated with 2n = 32 vertices).
For these experiments, we set our hyperparameters to

η = 0.005, cb = 100, r = 1.2, d = 120, T = 150 (4.1)

where r isUP regularization and we average over 10 reps per trial. These
hyperparameters are similar to ones used in HTAAC-QSDP experiments with
MaxCut [31]. The values we choose are a result of preliminary testing, where we
sweep the parameters across a small range of values to achieve the best cut values
for graph 000.

We run trials on the first 5, 15, 25, 30, 31 constraints, ordered by the number of
σx gates that each Pauli-x string contains. For example, the first

(5
1

)
Pauli-x strings

contain a single σx and the next
(5
2

)
Pauli-x strings contain two σx operators.

Expectation values are tabulated in Tab. 4.1.1. We observe that as we increase the
number of included operators, longer strings are more strongly enforced (recall
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we want 〈Ox〉 = 0) and shorter strings are more strongly violated.
We also look at the loss and cut size for each set of constraints on graph 000.

Recall CQ denotes the cut size achieved by HTAAC-QSDP and CSDP denotes the
cut achieved by the classical Goemans-Williamson algorithm. We have a plot of
the loss and cut ratio CQ/CSDP given by Fig. 4.1.1. We see that in general, the
inclusion of more Pauli-x strings results in a marginal decrease in the loss; yet the
cut ratio CQ/CSDP converges to 0.96 for all subsets of constraints. Thus, the
performance of HTAAC-QSDP is independent of the number of included
strings/constraints. We also conduct these tests for graphs 001 through 004. The
loss and cut plots are given by Fig. A.0.1 in Appendix A.That decreasing the
number of constraints decreases computational overhead and does not affect
solution quality motivates us to include only the

(n
1

)
= O(n) Pauli-x strings that

contain one σx. These are first-order bit-flip constraints, which are similar to
the approximate amplitude constraints used to approximately enforce ρii = N−1.

4.2 Hyperparameter search and generalizability

We conduct a manual hyperparameter search to find the optimal parameters for:
learning rate η, gate repetitions (circuit depth) d, the unitary phase α, coefficient
base cb, andUP regularization r. We perform this search on graph 000 and use
first-order bit-flip constraints, using Pauli-x string constraints containing exactly
one σx operator, for T = 150 epochs.

The first search includes a wider range of values, followed by a second, more
restricted, search based on the performance of the first search. We search over
O(104) different combinations of parameters across the two searches. The best
cut ratios for all permutations of parameters is given by CQ/CSDP = 0.987. We
tabulate results of the best performing parameters in Tab. 4.2.1.

We test the parameters in Tab. 4.2.1 on all graphs 001 through 009 for three
trials each. The best-performing parameters, average cut values and ratios, and
performance are tabulated in Tab. 4.2.2. We expect the cut ratio to be weakly

28



0 100
Epochs

0.0

0.1

0.2

0.3

A
ve

ra
ge

lo
ss

31, -0.03328

25, -0.02380

15, 0.00018

30, -0.03099

5, 0.07441

(a)

0 100
Epochs

195

200

205

210

215

220

225

A
ve

ra
ge
C
Q
/C

S
D
P

31, 0.97

25, 0.964

15, 0.967

30, 0.959

5, 0.967

(b)

Figure 4.1.1: Plots generated on graph 000 using a learning rate η = 0.005,
coefficient base cb = 100, UP regularization r = 1.2, T = 150, a circuit depth
of 120 and 10 repetitions per trial. 4.1.1a The average loss of 10 repetitions
after 150 epochs using different number of Pauli-x string constraints. The
legend is in the form (c, v), where c is the number of constraints and v is the
(rounded) value at time T. We note that average losses can be negative be-
cause all terms in the loss function are not strictly positive. 4.1.1b. The av-
erage cut ratio CQ/CSDP of 10 repetitions after 150 epochs using different
number of Pauli-x string constraints. The legend is in the same form as in Fig.
4.1.1a. We see that the average cut ratio converges to some maximum value.

smaller than the cut ratio for graph 000 because the optimal parameters θ are
problem-specific. We find, however, that for most of the graphs, solution quality
exceeds 0.97, which demonstrates that this method generalizes well to graphs
outside the training set. The top five performing sets of parameters for each graph
are tabulated in Tab. A.0.1 in Appendix A.

Looking at these plots, we demonstrate that HTAAC-QSDP using first-order
bit-flip constraints indeed produces approximate solutions/cut values with
solution quality near or equivalent to the best-known classical SDP solvers for
MaxBisection.
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Total number of constraints
i 5 15 25 30 31

0 0.100505 0.139088 0.169367 0.172688 0.178030
1 0.100332 0.139688 0.169438 0.172601 0.173783
2 0.107630 0.150811 0.167124 0.181454 0.185950
3 0.098748 0.130857 0.155605 0.159990 0.162059
4 0.101498 0.132806 0.160310 0.163272 0.168414
5 0.013812 0.026385 0.026127 0.027051
6 0.016460 0.023906 0.027786 0.030617
7 0.014324 0.023942 0.024878 0.026348
8 0.014538 0.022428 0.024895 0.026268
9 0.014854 0.020206 0.025320 0.025725
10 0.015090 0.025445 0.026211 0.027647
11 0.012768 0.022046 0.023208 0.025115
12 0.016287 0.022063 0.025470 0.027178
13 0.017697 0.027633 0.028944 0.031180
14 0.014333 0.023956 0.024749 0.026587
15 0.010557 0.009585 0.010803
16 0.002158 0.002708 0.003311
17 0.004382 0.005106 0.004740
18 0.002164 0.001709 0.002495
19 0.002551 0.004663 0.003833
20 0.002534 0.002653 0.003088
21 0.002401 0.003039 0.002397
22 0.000894 0.002039 0.001676
23 0.006467 0.009419 0.011658
24 0.000700 0.001218 0.000932
25 0.000360 0.000510
26 0.000379 0.000402
27 0.000854 0.001160
28 0.000011 0.000004
29 0.000682 0.000502
30 0.000002

Table 4.1.1: 〈Ox〉 values of the ith Pauli-x string as we increase the total
number of Pauli-x strings. A larger 〈OX〉 value indicates greater violation of
the constraint 〈Ox〉 = 0, which enforces vertex bisection. We order strings by
the number of σx gates in the Pauli-x string. For example, the first

(5
1

)
con-

straints contain all Pauli-x strings with one σx; the next
(5
2

)
constraints con-

tain all strings that contain two σx gates.30



Test cb η α r d CQ/CSDP

0 150 0.01 0.05 1.0 40 0.987
1 150 0.01 0.05 1.5 60 0.987
2 100 0.01 1.0 1.0 40 0.987
3 100 0.005 0.01 1.0 20 0.987
4 100 0.005 0.05 2.0 60 0.987
5 100 0.005 0.05 1.5 60 0.987
6 200 0.01 0.01 2.0 60 0.987
7 150 0.005 0.5 1.0 60 0.987
8 100 0.005 0.01 2.0 60 0.987
9 100 0.01 0.01 1.5 40 0.987
10 100 0.005 0.5 1.0 40 0.987
11 200 0.01 0.01 1.0 60 0.987
12 100 0.005 0.1 2.0 60 0.987
13 100 0.005 1.0 2.0 60 0.987
14 100 0.0025 0.05 1.5 20 0.987
15 100 0.0025 0.5 1.5 60 0.987
16 100 0.01 1.0 1.0 60 0.987
17 100 0.0025 1.0 1.0 40 0.987
18 100 0.01 0.05 1.0 20 0.987
19 100 0.01 0.5 2.0 60 0.987

Table 4.2.1: Optimal parameters for graph 000 with first-order bit-flip
constraints (NX = 5 for all trials). All trials are run for T = 150 epochs.
We tabulate parameters that yield the best performance, with cut ratios of
CQ/CSDP = 0.987.
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Graph cb η α r d CQ CSDP CQ/CSDP

001 100 0.005 0.5 1.0 40 223.67 230 0.972
002 100 0.01 0.01 1.5 40 224.33 231 0.971
003 150 0.005 0.05 2.0 60 228.33 236 0.967
004 100 0.005 1.00 2.0 60 220.67 229 0.963
005 150 0.005 0.5 1.0 40 228.33 236 0.967
006 100 0.01 1.0 1.0 60 229.00 233 0.983
007 100 0.01 0.05 3.0 20 225.33 234 0.963
008 100 0.005 0.01 2.0 60 218.67 225 0.971
009 150 0.005 0.5 1.0 60 235.00 240 0.979

Table 4.2.2: Optimal parameters for graphs 001 through 009 with first-order
bit-flip constraints, NX = 5 for all graphs. We show the best performing pa-
rameters for each graph for three repetitions, and report the average HTAAC-
QSDP cut CQ, CSDP, and the average cut ratio CQ/CSDP. All trials are run for
T = 150 epochs.
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Chapter 5

Conclusion and futurework

In this thesis, we experimentally show that the Hadamard test with approximate
amplitude constraints (HTAAC-QSDP) extends toMaxBisection, with solution
quality equivalent to the best classical SDPmethods. Themethod, as introduced
by Patti et al., [31] uses n+ 1 qubits to solve SDPs withN = 2n variables and
M ∼ 2n constraints by taking a constant number of quantummeasurements (two
Hadamard tests forUW,UP) andO(n2) classical calculations per epoch. More
specifically, we estimateO(n2) approximate amplitude constraints andO(n)
first-order bit-flip constraints for MaxBisection. For this problem, this represents
an exponential reduction in the number of required expectation values.

We use a quantum implementation of Goemans-Williamson to approximately
enforce theM = 2n constraints using a population balancing Hadamard test. We
demonstrate this method on ten generated Erdös-Rényi graphs, approaching the
performance of leading gradient-based classical SDP solvers on all graphs.

In future work, these experiments can be tested on additional types of graphs
like toroid graphs or skewed binary and skewed integer graphs, as is done in by
Patti et al. [31]. Moreover, this method can be extended to additional problems
like Max2Sat or to additional types of SDPs.
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Appendix A

Additional plots and figures

Here, we present plots and figures that supplement results and analysis.
We have the average loss and average cut ratio for graphs 001 through 004

shown in Fig. A.0.1. We generate plots using η = 0.005, cb = 100, r = 1.2,
T = 150, d = 120 and 10 repetitions per trial, to obtain average values.

Moreover, we tabulate the five highest-performing sets of parameters for
graphs 001 through 009 in Tab. A.0.1., using optimal parameters obtained from
two rounds of hyperparameter searches on graph 000. We observe that these
parameters yield a cut ratio of at least 0.95 for all graphs, suggesting that
HTAAC-QSDP generalizes well to graphs outside of the training set.
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Figure A.0.1: Plots generated using a learning rate η = 0.005, coefficient
base cb = 100, UP regularization r = 1.2, T = 150, a circuit d of 120 and 10
repetitions per trial. Each pair contains the average loss and cut ratio, respec-
tively, of 10 repetitions after 150 epochs using different number of Pauli-x
string constraints. The legend is in the form (c, v), where c is the number of
constraints and v is the (rounded) value at time T. A.0.1a Plots for graph
001. A.0.1b Plots for graph 002. A.0.1c Plots for graph 003. A.0.1d Plots for
graph 004.
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Graph cb η α r d CQ/CSDP Graph cb η α r d CQ/CSDP

001 100 0.005 0.5 1.0 40 0.972 002 100 0.01 0.01 1.5 40 0.971
001 100 0.01 1.0 1.0 40 0.972 002 100 0.01 0.5 2.0 60 0.967
001 150 0.005 0.5 1.0 60 0.970 002 100 0.005 0.1 2.0 60 0.960
001 100 0.01 0.01 1.5 40 0.970 002 100 0.01 0.05 1.0 20 0.958
001 100 0.005 1.0 2.0 60 0.968 002 100 0.005 0.5 1.0 40 0.958

003 100 0.005 0.05 2.0 60 0.968 004 100 0.005 1.0 2.0 60 0.964
003 100 0.01 1.0 1.0 60 0.965 004 200 0.01 0.01 2.0 60 0.962
003 100 0.0025 0.5 1.5 60 0.962 004 100 0.01 1.0 1.0 60 0.961
003 150 0.01 0.05 1.0 40 0.962 004 100 0.0025 1.0 1.0 40 0.961
003 100 0.005 0.01 2.0 60 0.960 004 150 0.005 0.5 1.0 60 0.951

005 100 0.005 0.5 1.0 40 0.968 006 100 0.01 1.0 1.0 60 0.983
005 100 0.0025 1.0 1.0 40 0.968 006 100 0.005 0.01 2.0 60 0.976
005 150 0.005 0.5 1.0 60 0.966 006 100 0.005 1.0 2.0 60 0.973
005 100 0.01 1.0 1.0 40 0.962 006 100 0.01 1.0 1.0 40 0.970
005 200 0.01 0.01 1.0 60 0.960 006 100 0.0025 0.5 1.5 60 0.969

007 100 0.01 0.05 1.0 20 0.963 008 100 0.005 0.01 2.0 60 0.972
007 150 0.005 0.5 1.0 60 0.962 008 100 0.005 0.05 2.0 60 0.967
007 100 0.005 0.01 1.0 20 0.960 008 100 0.005 0.05 1.5 60 0.967
007 100 0.01 1.0 1.0 60 0.960 008 100 0.0025 0.5 1.5 60 0.963
007 100 0.005 0.01 2.0 60 0.956 008 100 0.005 0.1 2.0 60 0.960

009 150 0.005 0.5 1.0 60 0.979
009 100 0.005 0.01 2.0 60 0.975
009 100 0.01 0.01 1.5 40 0.971
009 100 0.005 1.0 2.0 60 0.971
009 100 0.005 0.05 2.0 60 0.969

Table A.0.1: Optimal parameters for graphs 001 through 009 with first-order
bit-flip constraints (NX = 5 for all trials). All trials are run for T = 150 epochs.
Recall we have the coefficient base cb, learning rate η, unitary phase α, popula-
tion regularization r, circuit depth d, mean HTAAC-QSDP cut CQ, and mean
performance or cut ratio CQ/CSDP. We observe that there is not much vari-
ance in the performance over best parameters.
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