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Rubidium has proven a workhorse for investigations of atomic physics. Its simple and accessible
electronic structure has lead to its use as an atomic clock frequency standard, and as a platform for
quantum computing and quantum information. In this paper, we provide a characterization of the
eight L = 0 to L = 1 (D1) hyperfine transitions of 87Rb and 85Rb, the lowest order transitions that
strongly couple to near-visible light. We use a new proposed model for the spectrum of multiple
nearby transitions excited by two counter-propagating beams to extract the Doppler-broadened and
inherent line widths of all eight D1 lines, finding relatively good agreement with the literature.
Within the F = 2 to F = 1 D1 transition of 87Rb, we characterize narrow two-photon transitions
associated with electromagnetically induced transparency (EIT), finding full line widths as low as 3
KHz. Lastly, we utilize these narrow transitions to demonstrate group velocities in Rb vapor three
orders of magnitude less than vacuum.

I. INTRODUCTION

The transition spectrum of the single valence electron
of rubidium has been widely studied [1–5], especially in
the context of rubidium as a platform for quantum in-
formation [6–8]. Rubidium is the 23rd most abundant
element in Earth’s crust [9] and appears in two naturally
occurring isotopes: the stable 85Rb, and the radioactive
87Rb with a half life of 4.9× 1010 years [10]. In perhaps
the most well-known application of rubidium, the hyper-
fine structure exhibited by the coupling of a non-zero nu-
clear spin to the electronic angular momentum within the
87Rb isotope has been used to develop extremely stable
atomic clocks [11]. These atomic clocks are used as fre-
quency standards in military, scientific, and civilian ap-
plications [12]. Beyond this, much work has been devoted
to investigating the optical properties of hot rubidium
gas [4, 13], which exhibits several interesting phenomena.
Firstly, Doppler broadening of electronic transitions due
to the random thermal movement of a hot gas can be
easily observed in a rubidium gas near and above room
temperature. This effect typically prevents investigation
of the zero-temperature behavior of such transitions, but
in the presence of multiple optical beams exciting the
same transitions, it is possible to observe so-called sub-
Doppler effects due to saturation of atomic absorption.
These sub-Doppler effects reveal properties of the elec-
tronic transitions at zero-temperature, such as their line
width. Furthermore, dark states, or states from which no
transition is optically excited within a certain configura-
tion, have been extensively studied in rubidium [14, 15].
One such interesting dark state can be prepared when
light resonant to a pair of degenerate transitions will
suddenly experience no absorption due to a quantum-
mechanical two-photon coherence effect called a dark res-
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onance [14, 16]. Such electromagnetically-induced trans-
parency (EIT) features exhibit extremely high dispersion
near resonance, which has been used to slow the propa-
gation of light pulses down to 90 m/s [4]. In this paper,
we aim to provide another characterization of the well-
known spectrum of rubidium for the naturally-occurring
isotopes 85Rb and 87Rb, specifically within the L = 0 to
L = 1 (D1) transition, where L is the electron orbital
angular momentum number. We chose to focus on this
transition because it is capable of exhibiting interesting
sub-Doppler and dark state effects, and it is easily acces-
sible via an inexpensive near-infrared laser.
Our paper is organized as follows. In section II, we pro-

vide some relevant theoretical background. In section III,
we describe the aspects of our experimental setup com-
mon to each of the three investigations we perform into
the sub-Doppler spectrum, dark resonances, and slow
light properties of rubidium. These three investigations
form the last three sections. In our first investigation,
we fit the sub-Doppler spectrum of 85Rb and 87Rb to a
model we propose based on the semi-classical treatment
of individual transitions, and find impressive agreement
between theory and experimental data. In our second in-
vestigation, we observe the emergence of dark resonances
within the 87Rb D1 line with extremely narrow full line
widths near 3 KHz, where F is the total atomic angular
momentum number. In our third investigation, we uti-
lize the highly dispersive qualities of these narrow dark
resonances to reduce the group velocity of a single po-
larization component of light to a few hundred thousand
meters per second.

II. BACKGROUND

A. Properties of rubidium

A diagram of the rubidium hyperfine structure is
shown in Fig. 1. Rubidium has one valence electron
at n = 5, leading to a relatively simple electronic level
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structure. The electron has an intrinsic spin angular mo-
mentum S, and an orbital angular momentum L. The
L states are labelled by the orbital angular momentum
number L = 0, 1, 2, . . . as the s, p, d, . . . states. In gen-
eral, an eigenstate of V 2 ≡ V ·V , where V is an angular
momentum operator, has eigenvalue ℏ2V (V +1), where V
is the corresponding angular momentum number. In this
paper, we will focus on transitions between the ground
L = 0 state 52s1/2 and the L = 1 anti-aligned L,S state

52p1/2; the so-called D1 line at 794.7 nm. Rubidium

has non-zero nuclear spin I, with I = 5/2 for 85Rb and
I = 3/2 nuclear spin for 87Rb. This nuclear spin couples
to S,L to produce a hyperfine level structure described
by the total angular momentum F ≡ I + J + S. For
87Rb, this results in F = 1, F = 2 manifolds in both
ground (L = 0) and excited (L = 1) states, and for 85Rb
this results in F = 2, F = 3 manifolds in both states.

B. Two-level systems: Semi-classical model

Throughout this paper, we refer to the semi-classical
model of atom-light interaction as a guide in our analysis,
so we present an overview of the model here.

Consider a two level atomic system of one electron with
a ground state |g⟩ and excited state |e⟩, in the presence
of a coherent electric field E = E0e

i(ωlt−k0x) with fre-
quency ωl, wave number k0, and amplitude E0. Treating
the atom quantum-mechanically and the field classically,
the interaction between the electric field and the atom’s
electric dipole will have energy eE · r, where −e is the
charge of the electron. For dipole allowed transitions,
where

reg ≡ ⟨e|r|g⟩ ≠ 0, (1)

this leads to a coupling term Ω = e
ℏE0|reg| (the Rabi

frequency) in the atom’s Hamiltonian, in addition to the
already existing energy splitting ∆ between the two un-
perturbed states |g⟩, |e⟩:

H =

[
∆/2 Ω cos(ωlt)

Ω cos(ωlt) −∆/2

]
. (2)

Solving Schrodinger’s equation in the rotating frame of
the light, converting the state picture to a density matrix
ρ, and introducing a decay rate γ describing spontaneous
emission from |e⟩ to |g⟩ produces the so-called Optical
Bloch Equations [17], whose solution in the steady state
(ρ̇ = 0) gives

ρee =
1
4Ω

2

δ2 + γ2 + 1
2Ω

2
ρeg =

Ω
2

δ + iγ
(ρgg − ρee) (3)

where δ ≡ ωl − ∆/ℏ is called the detuning, and ρge =
ρ∗eg, ρgg = 1− ρee.
Note that in a cloud of N such atoms, the number of

atoms in each state Ne, Ng are determined by the on-
diagonal components of ρ, as Ne = Nρee, Ng = Nρgg.

On the other hand, the off-diagonal elements of ρ lead
to non-zero atomic dipole moments according to Eq. 1.
The sum of the dipole moments d (assuming all atoms
are in the same state) of N such atoms in a cloud form
the polarization P = Nd of that medium, from which
we can extract the electric susceptibility χ = P

ϵ0E0
. The

imaginary component of χ gives rise to an absorption
coefficient α:

α = k0Im[χ] = k0
ℏ

ϵ0E2
0

Ω2γ

δ2 + γ2
(Ng −Ne), (4)

while the real part affects its index of refraction:

n ≈ 1 +
1

2
Re[χ] = 1 +

ℏ
2ϵ0E2

0

Ω2δ

δ2 + γ2
(Ng −Ne). (5)

Combining Eqs. 3, 4, 5 gives the functional depen-
dence of ∆n, the differential index of refraction, and α
on Ω, δ, γ:

α ∝ γ

δ2 + γ2 + 1
2Ω

2
, ∆n ∝ δ

δ2 + γ2 + 1
2Ω

2
. (6)

In particular, we see that the effective (half width at
half max) line width of the transition is

Γ ≡
√
γ2 +

1

2
Ω2 (7)

showing the phenomenon known as power broadening,
whereby the line width is broadened by greater Ω.

III. EXPERIMENTAL SETUP

1. Laser

The light source used in the experiment is a Vortex
6017 tunable external-cavity diode laser. This laser is a
Class IIIb device, and is based on the Littman-Metcalf
design [19]. A schematic of the laser design is shown in
Fig. 2. This design uses a diode laser, diffraction grating,
and mirror that form an external cavity. Small changes

(a) 87Rb hyperfine structure
and D1 line.

(b) 85Rb hyperfine structure
and D1 line.

FIG. 1: Hyperfine structure and D1 line of rubidium
isotopes.
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in the angle of the mirror change the length of the cav-
ity, and thus change the lasing wavelength. Rotation of
the end mirror is achieved via a piezoelectric transducer
(PZT).

The Vortex controller provides current, voltage, and
temperature controls. We keep the laser current at the
factory-recommended value of 33.0 mA throughout the
experiment in order to prolong the life of the laser and
instead vary the voltage setting. The voltage control
drives the piezo in the laser head, which controls the
lasing wavelength.

2. Rubidium vapor cells

We use two rubidium vapor cells. Each cell is three
inches long and one inch in diameter, made from optical
quality gas.

One cell contains rubidium vapor of both isotopes,
85Rb and 87Rb. This is the cell mounted at 90◦ to the
primary beam axis.

The second cell contains neon buffer gas in addition
to rubidium. This buffer gas minimizes collisions of ru-
bidium with the walls. This cell is mounted inside the
magnetic shield and solenoid. In particular, this cell con-
tains only 87Rb and 3 Torr of neon gas.

3. Pockels cell

Our setup contains a Pockels cell (Conoptics 350-
80LA), which is a voltage-variable wave plate made of
a birefringent material. Inside the cell, there is a crystal
between two electrodes. We use the Pockels cell to intro-
duce circular polarization and modulate the polarization
of light. We then measure the group velocity of light in
the modulated circular component. We use a Lasermet-
rics AF3 DC amplifier to provide a ±650 V output and
modulate the voltage signal using a Gaussian pulse from
a Stanford Research Systems DS345 function generator.

FIG. 2: Littman-Metcalf laser cavity in Vortex 6017
laser [18].

4. Photodetectors

We use both Thorlabs PDA55 and Thorlabs DET110
photodetectors in order to collect our data in the form of
beam intensity. The PDA55s require a DC input while
the DET110s are battery-powered.

5. Magnetic shield, oven and solenoid

We make use of a three-layer cylindrical mu-metal
magnetic shield. A schematic of the shield, oven, and
solenoid is given in Fig. 3. This shield screens the rubid-
ium cell containing only 87Rb from the Earth’s magnetic
field in addition to fields generated in the laboratory. The
cylindrical portions of the shield are held together and
insulated by sheets of foam.
A heater is wound around the inner cylinder of the

shield and heats the cell. A Harrison 6200A regulated
DC power supply provides power to the heater. In order
to observe dark resonances and detect slow-light signals,
we keep the cell at around 60◦ C in order to produce Rb
atomic densities in the range of 1011 cm−3 to 1012 cm−3.
Finally, a solenoid is wound on an aluminum frame,

consisting of two layers high temperature magnet wire.
We vary the strength of the field by driving it via one of
the function generators.

IV. SUB-DOPPLER 85Rb AND 87Rb
SPECTROSCOPY

A. Theory

The spectral lines of a gas of atoms at finite temper-
ature exhibit so-called Doppler broadening [20]. Atoms
with velocity v along the direction of beam propagation
will experience the beam frequency Doppler shifted by
∆ω = −vk, where k is the wave number of the beam.

FIG. 3: Magnetic shield, oven, and solenoid schematic.
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The distribution of velocities for atomic mass m at tem-
perature T follows the Maxwell-Boltzmann distribution:

P (v) =

√
m

2πkBT
e
− mv2

kBT . (8)

The interactions of different velocity classes of atoms
with the beam at a given transition results in a broad line
width, as a beam with detuning δ will be on-resonant for
atoms moving at velocity −δ/k.
Introducing a second, counter-propagating beam pro-

duces interesting effects. At the same detuning δ as the
pump beam, the probe interacts with atoms in the δ/k
velocity class. Thus for δ = 0, these beams interact with
the same atoms: those moving in the plane normal to the
beams’ propagation (v = 0). This interaction tends to
produce dips in the absorption around δ = 0, as the same
atoms absorbing the probe beam are also more likely to
be in the excited state (and therefore unable to absorb)
due to the pump beam.

Here, we introduce a model for this behavior based
on the semi-classical treatment of atom-light interaction.
In this model, for a spectrum with n transitions, the
population difference between all ground states and all
excited states in N(v) atoms of velocity v directly follows
from Eq. 3:

∆N(v) = N(v)

[
1− 1

2

n∑
i=1

Ω2
i

(δi − vk)2 + γ2
i + 1

2Ω
2
i

]
.

(9)
Each transition has its own detuning δi, half line width
γi, and Rabi frequency Ωi.
From Eq. 4, the probe beam will then experience

an absorption coefficient (integrating over all velocity
classes) proportional to

∫ ∞

−∞
dv

 n∑
j=1

e
−m(v−v

(j)
0 )2

kBT
Ω2

jγj

(δj + vk)2 + γ2
j

∆N(v) (10)

where we have introduced a mean velocity v
(j)
0 of the jth

transition to account for shifts in the sub-Doppler line
due to thermal variations in the gas. There are several
implicit assumptions in our choices for Eqs. 9 and 10:
see Appendix B for a more detailed discussion.

Now we consider terms that give rise to sub-Doppler
effects. At δi = 0, the “diagonal” terms in the product
of the sums[

Ω2
i

(vk)2 + γ2
i + 1

2Ω
2
i

] [
Ω2

i γi
(vk)2 + γ2

i

]
(11)

give rise to dips in the absorption at resonance because
the point of maximum absorption in the second term (v =
0) also corresponds to the point of greatest saturation in
the first term, where ∆N is minimized as a function of
δi.

Of particular interest are the “off-diagonal terms” at
δi = −δj , when the pump frequency is halfway between

FIG. 4: Laser spectroscopy and Doppler-free saturation
spectroscopy schematic.

the resonant frequencies of the i’th and j’th transitions,
as this results in[

Ω2
i

(δi − vk)2 + γ2
i + 1

2Ω
2
i

] [
Ω2

jγj

(−δi + vk)2 + γ2
j

]
. (12)

Once again, the point of maximum absorption in the
second term (v = δi/k) also corresponds to the point
of greatest saturation in the first term, providing the
same dip in absorption. These are known as crossover
resonances, and predict a phenomenon that we observe
in our experimental data. Intuitively, they occur when
the pump and probe beam interact with the same group
of atoms, but with two different transitions, providing
the same absorption saturation effect of on-resonant sub-
Doppler peaks, but now at the mean frequency of every
pair of transitions.

B. Experimental setup

We investigated the combined spectrum of 85Rb and
87Rb by sweeping the frequency of a linearly polarized
beam near the D1 line. This sweep consisted of a tri-
angular waveform on the piezo frequency modulation in-
put of our laser, at a rate of 0.5 Hz. We calibrated the
relationship between the frequency modulation and the
absolute frequency via comparison of our observed tran-
sition peaks to the D1 line detunings between different
ground state F manifolds in the literature [2].
A counter propagating probe beam 101.6 times weaker

in intensity was added to observe sub-Doppler effects.
This was achieved by placing an ND 0.8 attenuating filter
followed by a mirror after the Rb cell.
Our optical schematic for both laser spectroscopy and

Doppler-free saturation spectroscopy is shown in Fig.
4. We used two photodetectors to observe absorption
lines in transmission of the probe beam and fluorescence
from the pump beam. Additionally, in order to improve
the quality of our measurements, we constructed a light
shield surrounding the PDfluor (Fig. 4) and the 87Rb
sample.
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We tuned the values of the two ND filters in Fig. 4, bal-
ancing the noise in the transmission signal (which grew
with ND1+2ND2) with the power-broadening of the sub-
Doppler features (which grew inversely with the strength
of the ND filters), settling on ND1 = 0.4 and ND2 = 0.8.

C. Results

The transmission in PDtrans (Fig. 4), denoted T , was
manually fitted to the function

T (a, b, d, α) = ae−dα + b (13)

where α was manually fitted to Eq. 10 for the eight tran-
sitions of the zero magnetic field hyperfine 85Rb, 87Rb
spectrum. Two additional Doppler-broadened transi-
tions with no sub-Doppler effects were added in the fit
at approximately 0 MHz and 2000 MHz detuning, to
account for dips in the transmission that were not as-
sociated with any transition. These additional dips are
present because the true absorption profile of a transition
at detuning δ resembles sinc(δ) rather than a Lorentzian
[21].

The fit results are shown in Table I and Fig. 5. From
the Table, our estimate of the inherent full linewidth 2γ
of the D1 transition is approximately 12-60 MHz, de-
pending on the hyperfine manifolds involved. Results in
the literature with similar Rb setups find 5 MHz [22]:
this discrepancy is due to the power broadening induced
by our strong pump beam, which is difficult to separate
from the inherent line width.

V. DARK RESONANCES OF 87Rb

A. Theory

Each F manifold in the 87Rb spectrum is spanned by
a basis of size 2F +1. Absent external interaction terms,
these 2F + 1 states are degenerate in energy. Thus, we
can excite them all resonantly, allowing us to investigate
a fascinating phenomenon of quantum coherence known
as dark resonances.

As a brief overview of the origin of dark resonances,
consider the simplest case that can give rise to them:
a three-level system, with two degenerate ground states
and one excited state, known as a Λ system (Fig. 6). Sup-
pose the two ground states |1⟩, |2⟩ are coherently driven
with strengths Ω1,Ω2, and the atom is in general super-
position of |1⟩, |2⟩ with coefficients c1, c2. The atom will
be driven to the excited state at a total rate of

Ω1c1 +Ω2c2. (14)

In particular, if

c1
c2

= −Ω2

Ω1
(15)

there will be no driving to the excited state: this is
usually referred to as EIT (electromagnetically induced
transparency) [16]. Preparing this state can be done by
optically pumping the atom, allowing it to explore all
states of the three-level system. Once the atom reaches
the dark resonance state, it will be trapped there, as the
optical pumping will no longer have any effect. Because
the lifetime of this transition depends on the coherence of
the ground states rather than the excited state lifetime,
this transition can be far narrower than the single-photon
resonance at that same frequency. For dark resonances,
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FIG. 5: Sub-Doppler rubidium spectroscopy.
(a) The full spectrum of the D1 lines of 85Rb and 87Rb.

Spikes in transmission correspond to increased
saturation due to both pump and probe beams

interacting with the same group of atoms.
In the labels below, g and e refer to the ground (L = 0)

and excited (L = 1) states, respectively.
(b) The 87Rb Fg = 2 transitions to Fe = 1, 2.
(c) The 87Rb Fg = 1 transitions to Fe = 1, 2.

(d) The 85Rb Fg = 3 transitions to Fe = 2, 3, with large
crossover resonance located at their midpoint.

(e) The 85Rb Fg = 2 transitions to Fe = 2, 3, with large
crossover resonance located at their midpoint.
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TABLE I: Derived properties of the 8 D1 transitions of 85Rb and 87Rb. δ0 refers to the transition frequency relative
to the lowest transition of that isotope, γ is the inherent half linewidth, Ω is the Rabi frequency, v0 is the mean

velocity of the Maxwell-Boltzmann Distribution for that transition, and γD is the Doppler-broadened linewidth (half
width at half max, as for γ). See Appendix C for error propagation and curve fit.

87Rb
Fg = 2 → Fe = 1 Fg = 2 → Fe = 1 Fg = 1 → Fe = 1 Fg = 1 → Fe = 2

δ0 (MHz) 0± 1.0 762.3± 1.4 6095.7± 3.4 6834.7± 1.8
γ (MHz) 18.57± 0.98 6.64± 1.22 11.68± 1.86 7.46± 1.05
Ω (MHz) 28.62± 0.08 17.32± 0.12 16.94± 0.09 20.93± 0.09
v0 (m/s) −27.7± 1.0 −32.5± 2.4 36.5± 3.0 −103.6± 1.9
γD (MHz) 170.0± 1.0 176.0± 2.6 241.9± 3.0 181.4± 1.8

85Rb
Fg = 3 → Fe = 2 Fg = 3 → Fe = 3 Fg = 2 → Fe = 2 Fg = 2 → Fe = 3

δ0 (MHz) 0± 0.6 335.7± 0.7 2738.2± 1.3 3058.2± 0.7
γ (MHz) 33.63± 0.77 6.29± 0.84 16.27± 0.99 14.70± 0.70
Ω (MHz) 46.34± 0.07 23.31± 0.09 24.12± 0.11 32.10± 0.09
v0 (m/s) −22.8± 0.6 −145.9± 1.8 32.3± 1.6 16.8± 0.9
γD (MHz) 198.2± 0.5 208.1± 1.8 174.2± 1.6 176.5± 0.9

|g >

|g >

|e>

1

2
2δ

FIG. 6: Three-level Λ system. Assuming a mechanism
such as the Zeeman effect that breaks the degeneracy of
the ground states, a drive tuned to the mean of the two

transitions will be δ red-detuned for |g1⟩ and −δ
detuned for |g2⟩.

we expect the dominant decoherence method to be atoms
moving beyond the region of the beam, called the “time
of flight” (TOF) [23].

One example of such a Λ system corresponds to the
two mF = ±1 angular momentum z-projection states of
some manifold with total angular momentum F ≥ 1 in
the ground state, and a state with mF = 0 in the excited
state. Since photons carry total angular momentum 1,
resonant circularly polarized light of a particular hand-
edness will excite only one of these states : σ+ (right
handed) light will excite the ∆mF = 1 transition, and
σ− (left handed) light will excite the ∆mF = −1 transi-
tion [24].

In this Λ system, introducing a non-zero magnetic field
B would break the degeneracy of the ground state due to
the Zeeman effect, producing a detuning δ for each mF

state:

δ = −gFµBBzmF (16)

where µB is the Bohr magneton, Bz is the applied mag-
netic field, and gF is the Landé g-factor.

We study the dark resonance around zero magnetic
field between F = 2 in the ground state to F = 1 in
the excited state of 87Rb. This state provides three Λ
triplets, one for each of mF ∈ {−1, 0, 1} in the excited
state. We chose this state because it provided the highest
signal-to-noise ratio in our apparatus.

To characterize the line widths of the dark resonances,
we chose to observe their variable dispersion rather than
absorption. Looking at Eqs. 4, 5, when δ ≫ γ we see that
α(δ) ∝ δ−2 and ∆n(δ) ∝ δ−1 (where ∆n ≡ n − 1); thus
it is easier to observe the dark resonance via ∆n rather
than α because its features will be less sharp. We expect
a dependence of the refractive index on the detuning as
given in Eq. 6, for a dark resonance width Γ. Denote
the refractive index for σ+ light as n+, and the refractive
index for σ− light as n−. To characterize Γ, we probe a
dark resonance transition with both circularly polarized
components at equal amplitude, i.e. uniformly linearly
polarized light. If n+ ̸= n−, the atoms will impart a
different phase on the two components: we expect the
difference of these two phases to be

∆φ =
c

ω
(n+−n−) ∝

δ

δ2 + Γ2
− −δ

δ2 + Γ2
=

2δ

δ2 + Γ2
(17)

where the detuning δ has the opposite sign between the
two components as demonstrated in Fig. 6, and ω is the
beam frequency.

Assuming such a phase shift ∆φ between the σ+ and
σ− components of the linearly polarized beam and negli-
gible absorption, we can extract ∆φ by applying a polar-
izer rotated 45 degrees relative to the axis of the linear
polarization. Consider the decomposition of the linear
polarized light into circularly polarized components in
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the Jones calculus (see Appendix A for an overview)[
1
0

]
=

1

2

[
1
i

]
+

1

2

[
1
−i

]
. (18)

Applying a phase shift ∆φ between the circularly polar-
ized components and multiplying by the transformation
matrix of a linear polarizer rotated 45 degrees relative to
the original linear polarization gives

1

2

[
1 1
1 1

](
ei∆φ 1

2

[
1
i

]
+

1

2

[
1
−i

])
=

1

4
(ei∆φ(1 + i) + 1− i)

[
1
1

]
≈ 1

4
(2− (1− i)∆φ)

[
1
1

] (19)

for ∆φ ≪ 1, which we can reasonably expect for low
rubidium vapor densities. Thus measuring either polar-
ization will give a signal with intensity linearly dependent
on ∆φ

≈ 1

4
(1−∆φ) +O(∆φ2) (20)

from which we can extract ∆φ.

B. Experimental setup

Our optical schematic for dark resonance observation
and analysis is shown in Fig. 4. We note that by placing
a sequence of half wave plates and polarizing beam split-
ter, we are able to select for linear polarization of one
orientation. Specifically, the half wave plate before the
Rb chamber is used to rotate the horizontally oriented
light from the PBS by 45 degrees, making the second
PBS perform its projection in this rotated basis as re-
quired by Eq. 19. A photodiode placed inline after this
beam splitter measures the dispersion signal.

The 87Rb cell used in this setup is kept at 60◦ C in
order to maintain a Rb density of 2.3 × 1011 cm−3, as
determined by a model for the vapor pressure in the lit-
erature [2].

Moreover, we investigate the effect of laser power on
the line width of dark resonances by placing an ND at-
tenuating filter before the Rb cell.

FIG. 7: Dark resonance observation schematic.
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FIG. 8: Example dark resonance dispersion signal fitted
to asymmetric Lorentzian dispersion. We sweep the

magnetic field linearly with time.
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FIG. 9: Dark resonance half line width γ as a function
of intensity attenuation. Error bars are shown in red,

but are too small to be visible on the plot (see
Appendix C for error propagation and curve fit).

C. Results

For each value of the laser power, we extract Γ, the
power-broadened width of the dark resonance, via a fit
of the dispersion signal to Eq. 17. An example of this is
shown in Fig. 8.
We fit Γ as a function of laser power to

Γ =
√
γ2 +Ω2

010
−β (21)

where β is the power attenuation, Γ is the power-
broadened half line width, γ is the inherent half line
width, and Ω0 is the Rabi frequency with zero attenu-
ation.
We find that the inherent half line width is given by

γ = 1.419± 0.048 kHz. (22)

The plot and fit of the data is shown in Fig. 9. This
value agrees very well with the literature: observations of
EIT features in a similar setup have been reported with
a minimum (half width) linewidth of γ = 1.5 kHz [22].
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VI. SLOW LIGHT IN 87Rb

A. Theory

The group velocity of light in a medium with
frequency-dependent index of refraction n(ω) is

vg =
dω

dk
=

1
d
dω

(
nω
c

) =
c

n+ ω dn
dω

. (23)

Consider the refraction around a dark resonance, for
one particular circularly polarized component of light.
Assuming the ∆n ≪ 1 and δ ≪ ω, from Eq. 6 we obtain

ω
dn

dω
= ω

Ne2|reg|2

2ℏϵ0
Γ2 − δ2

(Γ2 + δ2)2
(24)

because of the narrow line width of the dark resonance
and the corresponding steep dispersion, this may be much
greater than 1, which makes vg far less than c. Note that
this implies vg is minimized at δ = 0: in our case, this
corresponds to exactly on-resonant light and zero Zeeman
splitting.

B. Experimental setup

Our optical schematic for slow light propagation mea-
surement is shown in Fig. 10.

The setup is very similar to the dark resonance line
width measurement setup. One key difference is the ad-
dition of the Pockels cell, a voltage-dependent polarizer.
The beam incident on this polarizer is linearly polarized,
and we arrange this polarizer such that modulations to its
input rotate the linear polarization, introducing a small
amount of the polarization component perpendicular to
the primary component. The linear polarization is then
converted to elliptical polarization via a quarter wave
plate. We modulate the Pockel cell’s input voltage signal
using a Gaussian pulse from a Stanford Research Sys-
tems DS345 function generator. This pulse travels at the
group velocity through the Rb vapor, demonstrating the
phenomonon of “slow light”.

The main polarization component of the beam is ro-
tated to the circular σ+ polarization by the quarter wave
plate. The modulated component perpendicular to the
main component is rotated to σ−, and in conjunction
with the σ+ light pumps the Rb into a dark resonance
state. At zero magnetic field, the σ− then experiences
the slow group velocity associated with the steep index
of refraction of the narrow dark resonance.

FIG. 10: Slow light observation schematic.

Before entering the rubidium vapor cell, we split the
beam with a non-polarizing beam splitter. The reflection
is detected by one photodiode, and serves as a reference.
The transmission passes through the cell, where it ex-
periences the steep dispersion of the Rb cloud, and is
detected by the transmission photodiode.
In our setup we estimated, using the ideal gas law:

N =
PV

kBT
≈ 1.4× 1010 (25)

where T = 333 K is the temperature of the 87Rb cell, P is
the rubidium vapor pressure determined from a model in
[2], and V is the volume within which there is interaction
between the beam and the Rb atoms; V is estimated from
the beam width of our laser (0.5 mm) and the length of
our Rb chamber (3 inches). The transition dipole element
|reg| ≈ 1.58×10−10 m for the D1 line is also given by [2],
resulting in the following estimate of the group index of
refraction:

ng ≡ n+ ω
dn

dω
≈ 3× 105. (26)

Thus for a single circularly polarized component of our
beam, we expect group velocities on the order of 103 m/s.
Finally, we chose the F = 2 to F = 1 transition of the
87Rb D1 line as our target, as it has the narrowest dark
resonances.

C. Results

We first seek to find the group velocity as a function
of Zeeman splitting in the F = 2 manifold of the ground
state. To find the group velocity, we first fit each of our
transmitted and reflected pulses to Gaussians of the form

f(x) = A exp

[
− (x− x0)

2

2σ2

]
+ f(0) (27)
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FIG. 11: Group velocity (relative to c) as a function of
Zeeman splitting in the F = 2 manifold of the 52s1/2
state of 87Rb. Error bars shown in red, but are too

small to be visible on the plot (see Appendix C for error
propagation and curve fit).
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where we seek to extract x0, the time of the pulse. From
the difference of these two values, we can reconstruct the
group velocity vg and corresponding error.
We find that the minimum group velocity vgmin occurs

at a Zeeman splitting of 0 as expected, given by

vgmin = 4.207× 105 ± 1.7× 103 m/s, (28)

which is roughly three orders of magnitude slower than
the speed of light in vacuum. Alternatively, we can find
the above as a fraction of the speed of light:

vgmin

c
= 1.4035× 10−3 ± 5.6× 10−6. (29)

A plot of our data is shown in Fig. 11. Similar setups
with hot rubidium gas have observed group velocities as
low as 90 m/s, by further optimizing the beam setup and
rubidium vapor density [4].

We are also interested in the relationship between
group velocity and beam power. We employ the same
method above with the Zeeman splitting set to near 0,
placing an intensity attenuation filter at the head of our
laser, and find that the minimum group velocity vgmin

occurs at an intensity attenuation of ND=0.8. The asso-
ciated group velocity is

vgmin = 5.172× 105 ± 1.8× 103 m/s. (30)

The corresponding relative velocity is given by

vgmin

c
= 1.7253× 10−3 ± 6.1× 10−6. (31)

A plot of our data is shown in Fig. 12. We see that lower
beam power (increased ND of the filter) results in higher
group velocities, and that above a certain power there is
little change in the group velocity.
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Appendix A: Wave plates and polarizers: Jones
calculus

Light polarization is important in this experiment be-
cause polarization of light determines selection rules for
atomic transitions. Wave plates are used to preferentially
retard light along a certain axis, which is achieved by us-
ing a material where the index of refraction differs along
different axes.
We can represent the transformations of polarizers and

wave plates on light using Jones calculus, where polarized
light is described by a Jones vector and linear optical el-
ements are represented by Jones matrices. We can define
a Jones vector as follows:[

E0xe
iϕx

E0ye
iϕy

]
, ϕ ≡ k · ẑ − ωt (A1)

where k is the wave vector and ω is the angular frequency.
It is convention that the wave travels along the ẑ axis.
Linear polarized light in the x̂ and ŷ directions are given
by

|0⟩ ≡ 1√
2

[
1
0

]
, |1⟩ ≡ 1√

2

[
0
1

]
(A2)

respectively. Circularly polarized light σ+ (right handed)
and σ− (left handed) are given by

|σ+⟩ ≡ 1√
2

[
1
i

]
, |σ−⟩ ≡ 1√

2

[
1
−i

]
(A3)

Any polarized light can be expressed in this basis.
We can define Jones matrices, operators that act on

Jones vectors. These matrices are implemented by opti-
cal elements like lenses, (polarizing) beam splitters, mir-
rors, and polarizers.
Polarizers are not unitary; they are projection opera-

tors. For a general linear polarizer with axes at an angle
θ from the horizontal, the Jones matrix is given by[

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

]
. (A4)

When θ is 45 degrees, this becomes

1

2

[
1 1
1 1

]
(A5)
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Right and left circular polarizers with their axes along
x̂, ŷ are given respectively by

1

2

[
1 i
−i 1

]
,

1

2

[
1 −i
i 1

]
. (A6)

Wave plates and phase retarders are rotations and thus
unitary operators on Jones vectors. Any linear phase
retarder with its axes defined as the x̂, ŷ axes has zero
off-diagonal terms and can be expressed as[

eiϕx 0
0 eiϕy

]
. (A7)

The most general Jones matrix for any arbitrary bire-
fringent material is given by

e
iη
2

[
cos2 θ + eiη sin2 θ (1− eiη)e−iθ cos θ sin θ

(1− eiη)eiϕ cos θ sin θ sin2 θ + eiη cos2 θ

]
.

(A8)
In this experiment, we use quarter and half-wave

plates, with their Jones matrices given by

e±
iπ
4

[
1 0
0 ±i

]
, e−

iπ
2

[
cos2 θ − sin2 θ 2 cos θ sin θ
2 cos θ sin θ sin2 θ − cos2 θ

]
(A9)

respectively.

Appendix B: Sub-Doppler fit assumptions

Our model for the sub-Doppler spectrum of 87Rb (Eq.
10) contains several key assumptions. Here we enumerate
them, providing some justifications:

1. The pump beam alone defines the population
counts of each excited state. This is approximately
correct because the probe beam has 10−1.6 ≈ 2.5%
the intensity of the pump beam.

2. The steady-state excited population count N
(i)
e of

each transition i can be solved for independently
and the total excited state count is the sum of these
independent counts. This is justified by consider-
ing the fact that no two transitions are significantly
overlapping in their sub-Doppler width, so we can-
not near-maximally saturate multiple transitions at
once.

3. The probe beam experiences the refractive and ab-
sorptive qualities of the atoms without altering
their states. Again, this is justified by the large
intensity difference between the pump and probe
beams.

4. The absorption of each transition depends on the
total population difference between all excited and
all ground states, for any given isotope. This cap-
tures the effects associated with both pump and
probe beams being on resonant.

Appendix C: Error analysis

We use scipy.optimize.curve fit to calculate error.
This curve-fitting technique returns a covariance matrix
where the diagonal entries provide the variance of the pa-
rameter estimate. Taking the square root of these diag-
onal entries gives us one standard deviation error, which
are the errors we report. Generally, the errors of parame-
ters that are dependent on multiple other parameters are
calculated under the assumption of independent, additive
variances.
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