COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF
PROTECTING ELECTIONS FROM BRIBERY

KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

ABSTRACT. Electoral bribery is an important normative and empirical issue that has abounded
through history and the present. Following the work of Chen et al. [1], we consider the de-
structive protective problem: a defender with a given defense budget pays voters such that
they can no longer be attacked, and an attacker attempts to bribe undefended voters to
change their preferences such that the true winning candidate no longer wins. We extend
the proof of this problem as NP-complete under r-approval to the voting rule of Borda count.
We further verify the problem’s complexity experimentally for both r-approval and Borda
count. Finally, we consider an approximation of the destructive protective problem under
both voting rules and find promising polynomial results with implications for governments
wishing to protect their elections from bribery.

1. INTRODUCTION

We often think of voting in elections as the premier act of political participation [2] —
without which democracy would crumble. From a normative political theory perspective, elec-
toral bribery has deeply uncomfortable implications for democracy. Yet empirical evidence for
electoral bribery — the act of influencing voters’ ballots with money, goods, or favors — has
abounded through history and the present. In 18th-century England, candidates promised to
pay voters’ hefty property taxes in exchange for their vote [4]. American colonies inherited this
tradition: especially in the South, candidates treated voters to large amounts of food and drink
to secure votes [4]. Today, electoral bribery remains a prominent issue in the Philippines [5],
Latin America [6], and West Africa [7].

Contemporary electoral bribery has evolved strategy as well. In the Philippines, electoral
attackers target well-connected individuals when social networks are dense, and switch over
to people with reciprocal personalities when social networks become sparse [5]. From the
Gibbard—Satterthwaite theorem, we know that strategy-proofness is a difficult ideal to balance
with notions of fairness. Thus, rather than attempt to design an electoral system that cannot be
manipulated by either voters or brokers, we aim to protect existing non-strategy-proof voting
systems from bribery as best we can.

We introduce the following problems based on the work of Chen et al. [1]. In the bribery
problem, an attacker attempts to manipulate the election by bribing some voters into reporting
preferences of the attacker’s choice (rather than their true preferences). Each voter has a price
for being bribed, and the attacker has a budget for bribing voters. We focus specifically on the
bribery problem with a destructive attacker, who attempts to make the true winning candidate
— the candidate who would have otherwise won the election in the attacker’s absence — lose
the election.

This provides the background for the protection problem. A defender aims to protect the
election from bribery. They are given a defense budget to use to award a subset of voters so
that they cannot be bribed by the attacker. We ask: Given this defense budget, is it possible

Date: February 8, 2024.

2 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

for the defender to protect the election (i.e. assure that the attacker cannot influence the result
of the election)?

Chen et al. [1] proves that this destructive protection problem, when voters are assigned
weights and arbitrary prices, is NP-complete for r-approval. In this paper, we extend this result
to the voting rule of Borda count and verify its complexity experimentally. We also simulate an
approximation of the protection problem and examine its experimental complexity to evaluate
this problem practically, with promising suggestions for governments seeking to protect their
elections.

2. PROBLEM DEFINITION

We will follow the notation given by Chen et al. [1]. We consider m candidates C =
{c1,¢2,..., ¢} and n voters V = {v1,ve, ..., v,}. Each voter v; has a preference list 7;, which
is a permutation over candidates.

Moreover, we consider an attacker that is not in C UV but manipulates the election by
bribing voters. Each voter v; has bribing price pé’». If v; receives p?, then the voter will change
their preference list to the list given by the attacker. The attacker has budget B. In the
protection problem, we additionally consider a defender with budget F'. Each voter v; also has
awarding price pj. Upon receiving their awarding price by the defender, the voter will report
their preferences truthfully and cannot be bribed.

We now define the Borda count voting rule.

Definition 2.1 (Borda count). The Borda count is a family of positional voting rules where
candidates receive points corresponding to their rank. In the original Borda count variant, a
candidate in the kth position gets n — k points, where n is the total number of candidates.

We will let n-Borda denote the Borda count with n candidates. In this paper, we will consider
normalized n-Borda scoring.

Definition 2.2 (Normalized n-Borda). In n-Borda with normalized scores, the candidate in

the kth position gets score z:]f We simply divide scores in the original variant by n — 1.

2.1. Problem statement. We formalize the destructive protection problem as follows.

Definition 2.3 (Destructive protection problem). Consider a set C of m candidates and a set
of V of n voters. Each voter v; has a preference list of candidates denoted 7;, an awarding price
pj € Z>o and a bribing price of pg € Z>p. Consider a scoring rule for selecting a winner. There
is a defender with a defense budget F' € Z>o and an attacker with attack budget B € Zx
attempting to make candidate ¢, lose the election.

We seek to decide whether there is a subset Vp C V:

_ Ej:'l)jGVF p? < F and
— for any subset Vg C V \ Vp with Ej:vjevg pz’- < B, no candidate ¢ € C \ {c¢;,} can get
a strictly higher score than c,, despite the attacker bribing Vp.

3. THEORETICAL RESULT

Chen et al. [1] proved that the r-approval weighted destruction problem is NP-complete
(specifically when r > 3), but not much work has been done to show a similar result for Borda
count. We will show a similar result holds for n > 4.

Theorem 3.1. The Borda count destructive weighted-problem is NP-hard for any n > 4.

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERYW

Proof. We prove the above for n = 4. Note that the case of n > 4 can be addressed by
introducing dummy candidates and letting each voter vote for n —4 distinct dummy candidates.

We follow a similar logic as introduced in [1]. We first draw a reduction from 3DM, which
has been shown by [3] to be NP-hard.

We reduce from a variant of the 3DM problem where every element appears at most d = O(1)
times. Given a 3DM instance with 3¢ = [W U X UY| elements and n = |M| triples so that
every element appears at most d = O(1) times in M. Without loss of generality, we assume
that n > ¢ + 2d.

Now we re-index the elements in WUXUY as 21, 22, - , z3¢. Then let our weight @ = 2n+1
with 3¢ 41 key candidates. Here we can set) to be large enough such that only the key voters
(which will be defined later) will be considered by the attacker or defender, so we can consider
the case where there are two different weights: one of) and the other with unit weight. We
have two kinds of candidates

— 3¢ be element candidates. Call then ci,...,cs¢, which correspond to z1,..., z3¢, each
with a score of @ - f(z;);

— one leading candidate, who is the original winner with a score of @ - f(23¢41). Call this
candidate c3¢41.

Note c3¢41 ¢ WU X UY. In our construction, we also let there be sufficiently many dummy
candidates indexed c¢;, where ¢ > 3¢ + 1. Each dummy candidate has has score %

Now let there be 7 key voters, indexed from vy,...v, of weight). These key voters give
nonzero scores for 3 candidates under 4-Borda, so let each voter vote for a triple (z;, z;, ;) € M,
where z; represents the candidate with score 1 given by this voter, z; represents the candidate
with score % given by this voter, and z; represents the candidate with score % given by this
voter. Besides the key voters, there are also sufficiently many dummy voters v; for i > 7
with unit weight. Each dummy voter votes for one key candidate and two distinct dummy
candidates.

Let the attack budget be F' = ¢ and the defense budget be B = 1 — (. We define the vote

disparity to be

A=)™ if v; gives c3c41 score m (1)
“ 1—m/, additionally if v; gives ¢; gets score m/

Note that A;; € [0,2] under normalized Borda scores.
Further, as defined in [1], let

n
Apaz = 12%%(pa Aij7 dmaz = 12%)?()(d(zz) (2)
Now we define
- 1
F(5) = 20+ dmaz + Dz = Y Aijy f(z3c41) = 20+ s + Aoz = C+—. (3)
j=1
Observe that
n

S Ay zn—d>C = flmc) > f(z) (4)

=1

as every element appears at most d times in triples, and thus c3¢41 is indeed original winner.

Negative instance of 3DM implies negative instance of destructive protection. We

4 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

first show that a negative instance of 3DM implies a negative instance of the destructive-
weighted protection problem.

Suppose the 3DM instance does not admit a perfect matching. Let U to be the subset of
key voters who are fixed by the defender. Without loss of generality, because the defender has
the budget to, we consider a larger set U’, where |U’| = (. Let the attacker bribe { — 7 voters.

With bribery, the score of key candidate ¢; becomes

n
QUG+ 32 80) = QU (zscan) +¢ =).)

But there are key voters who aren’t able to be bribed, so they must be subtracted from the
score of key candidate ¢;. Since there does not exist a perfect matching in W U X UY, there
exists some zp in two triples — let this be candidate c.

Since at least two voters gave nonzero scores for candidate cg,

2
> A <(- - (6)
jiv; eV
So subtracting the key voters who aren’t bribed implies that the score of the key candidate
¢; becomes at least Q(f(z3¢+1) + %), implying that after bribery ¢; will get a higher score than
c3¢+1- And hence it becomes impossible to protect against bribery.

Positive instance of 3DM implies positive instance of destructive protection. Now
we show that a positive instance of 3DM implies a positive instance of the destructive-weighted
protection problem.

Suppose the 3DM instance admits a solution. Let T" C M be the perfect matching. So
|T| = ¢ and let the defender protect the triples in T. Recall each dummy candidate has score
%. If the attacker bribes all key voters, the score of each dummy candidate will increase by

@71 Aij. Note that

1 d 1
—+ QY A <mQ+ ol Qf(23¢41)- (7)
j=1
This demonstrates that no dummy candidate can win. For each key candidate, their score
after bribery will be Q(f(23¢41) + ¢ — 1). But since the defender has protected the voters in
T, Q¢ must be subtracted. So each key candidate’s final score is at most Q(f(z3¢c41) — %)

Therefore no key candidate can win either, and hence the defender can protect against a
destructive attacker. |

4. EXPERIMENTAL VERIFICATION RESULT

4.1. Brute force algorithm overview. To verify NP-completeness for the destructive pro-
tection problem under r-approval and Borda count, we consider a brute force algorithm. We
iterate through defending every possible subset of voters. If protection is possible given the
defending budget, we then iterate through bribing every possible subset of voters. We consider
the election to be successfully defended when a defended subset, for all possible bribed subsets,
always results in the true winner winning the election.

All code for experimental verification of NP-completeness can be found in Appendix A.

4.2. Results for r-approval. We iterate through all possible defense budgets for each simu-
lation of n € [5,20] voters to determine the first point at which the election can be successfully
defended, upon which the simulation terminates.

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERY;

Algorithm 1 Brute force algorithm for bribing problem

1: for every subset size s do

2 for every subset in the set of all possible subsets of size s do

3 if subset is defendable given the budget then

4 if voters cannot be bribed given these defended voters then
5: return true

6 end if

7 end if

8 end for

9: end for

10: return false

12000
8

10000
8000 &
6000 4
4000 E
2000 0
0 -2

E & w0 1 ¥ 1. 18 2 E 8 W 1 1® & 1B 2
(A) Run time results for r-approval with brute force (B) Log run time results for r-approval with brute
algorithm with increasing number of voters. force algorithm.

FIGURE 1. Run time for r-approval simulations.

As seen in Figure la, the run time for 20 voters is around 3 hours and 20 minutes. Our
machines were unable to provide results for n > 21. Clearly, the run time increases at a high
rate.

To verify exponential growth, we plot the log of the run times in Figure 1b. This is roughly
linear, though there is noise due to the randomization of voters. This confirms our belief that
the brute force algorithm is approximately exponential in the number of voters.

4.3. Results on Borda count. Results for Borda, as expected, were more computationally
expensive than r-approval. Our machines lacked sufficient memory for n > 18. The results for
n € [5,17] are averaged over four iterations to produce the plots.

It is clear that the run time of this algorithm grows near-exponentially in the number of
voters. To verify this claim, we plot the log of the run times in Figure 2b This is roughly linear.
We can conclude that the run time of the brute force method increases exponentially with the
number of voters and is practically infeasible.

‘We confirm that the destructive protection problem, for both r-approval and Borda count, is
exponentially intractable. This has unfortunate implications for the practical implementation
by governments of methods to protect against bribery.

6 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

1000 6
800 B

800
2

400
0

200
-2

0

6 B 10 b 14 16 6 B 10 12 14 16

(A) Run time results for Borda count with brute force (B) Log run time results for Borda count with brute
algorithm with varying number of voters. force algorithm.

FIGURE 2. Run time for Borda simulations.

5. EXPERIMENTAL APPROXIMATION RESULT

Political science research reveals strategies employed by attackers [5]. This gives us reason
to believe that governments may approximate a solution to the destructive protection problem
by focusing on simple greedy strategies.

5.1. Greedy approximation algorithm for bribing problem. We approximate the bribing
problem with a greedy algorithm designed to bribe as many voters as possible into supporting
the true second-place candidate and not supporting the true winner.

First, sort voters based on a combination of their bribe price, weight, and how highly they
rank the true winner (this is considered irrelevant for r-approval, as all approved candidates
gain the same number of points). This approximately orders voters based on how “good” they
are to bribe; low-cost, high-weight voters who highly rank the true winner are ideal bribery
victims.

Iterate through these sorted voters and if the attacker has enough money and the voter is
not defended, bribe the voter to move the true second-place candidate to the beginning of their
preference and the true winner to the end. The only exception is in r-approval with voters who
already approve of the true second-place candidate and do not for the true winner.

Algorithm 2 Greedy approximation for bribing problem

1: initialize briber with budget

2: sort voters

3: for each voter v do

4 if v is not defended and budget is enough to bribe v then
5: bribe v to change preference

6 decrease budget

7 find the winner w with new voter preferences
8 if w is not true winner then

9: return true

10: end if

11: end if

12: end for

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERY

5.2. Greedy approximation algorithm for defending problem. Now, we assume that
the defending government has some idea of the true winner and the attacker’s strategy. We
approximate the defending problem with the following greedy algorithm.

Sort the voters similarly to the attacking problem. Iterate through these voters: if the
defender has enough money and the voter supports the true winner (in r-approval, approves
of; in Borda count, places in the first half of their preference), defend the voter. After all these
“true winner-supporting” voters are defended, iterate through the remaining voters in order
and defend them if there is money left to do so.

Algorithm 3 Greedy approximation for defending problem

initialize defender with budget
sort voters
for each voter v do
if v highly supports true winner and budget is enough to defend v then
defend v
decrease budget
end if
end for
if budget > 0 then
for each voter v do
if v is not defended and budget is enough to defend v then
defend v
decrease budget
end if
end for
end if

I e N S

5.3. Simulation and results. As in the prior section, we simulate n random voters in a
setting with 5 candidates. We set the budget for the attacker at the maximum needed to bribe
all voters and slowly decrease it. Within each of these loops, the defender’s budget begins at 0
and slowly increases, to represent how a government may think about responding to an attacker
by increasing their spending on electoral protection. For n € [1,200], we time the entire process
and only stop when the defender succeeds in preventing the attacker from succeeding.

All code for this experimental approximation can be found in Appendix B. Here are the
resulting plots for r-approval (where r = 3) and Borda count:

Destructive Protection Problem Time Complexity. for r-approval i Destructive Protection Problem Time Complexity. for Borda count

8

7 Bo

6

Time {in sec)
-

175 150 75 00 [5 50 175 150 75 00

100 100
N (number of voters) N (number of voters)

8 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

5.4. Discussion. We see that the approximations for both voting rules seem to exhibit poly-
nomial patterns of time complexity. Borda count appears to reach twice as large a magnitude
of time per run; this is expected, as Borda count is more expensive to compute than r-approval.
The polynomial behavior is also somewhat expected due to the greedy algorithms keeping most
computations polynomial in the size of the number of voters.

This experimental approximation that runs in polynomial time is a great improvement upon
the NP-completeness of the true destructive protection problem, and much more feasible for
real-world governments to attempt. The requirements for this method to be attempted are
our assumptions when designing the defending greedy algorithm: knowledge of the true winner
and aspects of the attacker’s strategy. For governments attempting to protect their elections
from bribery, public opinion polling to determine the truly preferred winner before any electoral
bribery occurs and research into the strategies of electoral attackers like Ravanilla et al.’s [5]
may be the difference between a NP-complete and a polynomial problem.

6. CONCLUSION AND FURTHER RESEARCH

In this paper, we have shown the destructive weighted-protection problem to be NP-complete
for Borda count. We further verified these results for both r-approval and Borda count ex-
perimentally. Finally, we designed and simulated a greedy approximation of the destructive
protection problem, in which the problem can be reduced to polynomial time based on a few
key assumptions and strategic maneuvers.

There remain a great deal of results to prove in the electoral bribery space [1]. Notably, we
have only been considering the destructive attacker case, ignoring the case of the constructive
attacker, who attempts to get a candidate of their choosing to win the election. We know
that the constructive protection problem is harder than the destructive one [1]. Determining
an approximation for the constructive protection problem may prove even more useful for
governments.

We also only prove this result for Borda count. Recall that the Borda count voting rule is in
a larger class of positional voting rules. We note that an extension of this work to all positional
voting rules is much stronger and general.

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERY

(1]
2]
(3]
(4]
(5]
[6]

[7]

REFERENCES

L. Chen, A. I. Sunny, L. Xu, S. Xu, Z. Gao, Y. Lu, W. Shi, and N. Shah. Computational complexity
characterization of protecting elections from bribery. Theoretical Computer Science, 891:189-209, 2021.

R. J. Dalton. Citizen Politics: Public Opinion and Political Parties in Advanced Industrial Democracies,
chapter 3, pages 39—64. CQ Press, Thousand Oaks, CA, 7 edition, 2020.

V. Kann. Maximum bounded 3-dimensional matching is max snp-complete. Information Processing Letters,
37(1):27-35, 1991.

E. S. Morgan. Inventing the People: The Rise of Popular Sovereignty in England and America. W. W.
Norton Company, New York, 1988.

N. Ravanilla, D. Haim, and A. Hicken. Brokers, social networks, reciprocity, and clientelism. American
Journal of Political Science, 00(0):1-18, 5 2021.

S. C. Stokes. Perverse accountability: A formal model of machine politics with evidence from argentina.
American Political Science Review, 99(3):315-325, 8 2005.

P. C. Vicente. Is vote buying effective? evidence from a field experiment in west africa. Economic Journal,
124(574):356-387, 9 2014.

10 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

APPENDIX A. CODE FOR EXPERIMENTAL VERIFICATION OF NP-COMPLETENESS OF
DESTRUCTIVE PROTECTION PROBLEM

FIRST SET OF HELPER FUNCTIONS

def make_subsets(size, n):
""" returns a list of indices which refer to subsets
i.e. make_subsets(l, n) = [0, 1, 2, 3, ..., n-1] """
return [list(tup) for tup in list(itertools.combinations([i for i in
range(n)], size))]

def defend_subset(subset, voters, defense_budget):
""" returns possible (bool)
note that subset is a list """

subset_sum = 0
for voter in np.array(voters) [subset]:
subset_sum += voter.award_price

if subset_sum > defense_budget: return False
else: return True

def bribe_subset(subset, voters, bribe_budget, defended_subset):
""" returns possible (bool)

note that subset is a list """

subset_sum = 0
for voter in np.array(voters) [subset]:
subset_sum += voter.bribe_price

if subset_sum > bribe_budget: return False
else: return True

MAIN HELPERS AND MAIN

def can_be_bribed(defended_subset, bribe_budget, voters, candidates, is_r_approval):
""" returns true if, given defended voters,
any subset of bribery will work against it """
for subset_size in range(l, n+l):
for subset in make_subsets(subset_size, n):
if bribe_subset(subset, voters, bribe_budget, defended_subset):
subset can be afforded

for voter in np.array(voters) [defended_subset]:
voter.defended = True

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERM

if bribe(candidates, voters, bribe_budget, is_r_approval):
return True

return False # cannot be successfully bribed

Main function that determines if the voters can be defended.
This is the function which will be timed
def can_be_defended(candidates, voters, defense_budget, bribe_budget, is_r_approval):

n = len(voters)

for subset_size in range(l, n+1):
for subset in make_subsets(subset_size, n):
if defend_subset(subset, voters, defense_budget):
if not can_be_bribed(subset, bribe_budget, voters, candidates, is_r_approval):
return 1 # successfully defended
reset_voters(voters)

return O # cannot be successfully defended

12 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

APPENDIX B. CODE FOR EXPERIMENTAL APPROXIMATION OF DESTRUCTIVE PROTECTION
PROBLEM

first: classes for the people involved

class Voter:
def __init__(self):

self.pref = random.sample(candidates, m) # in order from most to least preferred
self.weight = random.random()
self.defended = False
self.bribed = False
self.bribe_pref = None
self .bribe_price = random.random() * 10
self.award_price = random.random() * 10

class Briber:
def __init__(self, budget):
self .kind = "destructive" # based on lemma 13
self .budget = budget

class Defender:
def __init__(self, budget):
self.budget = budget

second: find winner function

def r_approval(cands, voter):
based off alpha in Chen et al.
alpha = [0] * len(cands)
if voter.bribed:
pref_list = voter.bribe_pref
else:
pref_list = voter.pref

only candidates who are approved get 1 point; others get O
for approved in pref_list[:r]:

alpha[approved] = 1
return np.array(alpha)

def borda_count(cands, voter):
alpha = [0] * len(cands)
if voter.bribed:
pref_list = voter.bribe_pref
else:
pref_list = voter.pref

candidate in rank 1 gets m points, 2 gets m-1, and so on
for i, can in enumerate(pref_list):
alphalcan] = m-i

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERM
return np.array(alpha)

def find_winner(cands, voters, is_r_approval):
cand_scores = np.zeros(len(cands))
for v in voters:
if is_r_approval:
cand_scores += v.weight * r_approval(cands, v)
else:
cand_scores += v.weight * borda_count(cands, v)
ordering = sorted(enumerate(cand_scores), key=lambda x: x[1], reverse=True)
returns candidates in order of decreasing score
return [cands[o[0]] for o in ordering]

third: defending problem

def defend(candidates, voters, defender_budget, is_r_approval):
defender = Defender(defender_budget)

if is_r_approval:
voters_sorted
else:
voters_sorted = sorted(voters, key=lambda x: (x.award_price / x.weight) /
(m - x.pref.index(true_winner) - 1 + 1e-20))

sorted(voters, key=lambda x: x.award_price / x.weight)

for v in voters_sorted:
see if defending this voter would help election against destruction
if (is_r_approval and true_winner in v.pref[:r])
or (not is_r_approval and true_winner in v.pref[:len(v.pref)//2]):
see if can pay for voter
if defender.budget - v.award_price >= 0
or math.isclose(defender.budget, v.award_price):
defend voter, pay
v.defended = True
defender.budget -= v.award_price

if there’s still budget, start defending other undefended voters in order
if defender.budget >= O:
for v in voters_sorted:
if not v.defended:
see if can pay for voter
if defender.budget - v.award_price >= 0
or math.isclose(defender.budget, v.award_price):
defend voter, pay
v.defended = True
defender.budget -= v.award_price

return

14 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

fourth: bribery problem

def valid_bribee(voter, true_profile, is_r_approval):
first = true_profile[0]
second = true_profile[1]
pref = voter.pref.copy()

if voter.defended: # cannot bribe defended voters
return None, None

under r-approval, don’t bribe voters who already

approve of second and disapprove of first

if is_r_approval and (second in pref[:r] and first not in pref[:r]):
return None, None

pref.remove(first)
pref.remove(second)
pref.insert (0, second)
pref .append(first)
return 1, pref

def bribe(candidates, voters, briber_budget, is_r_approval):
briber = Briber (briber_budget)

if is_r_approval:
voters_sorted = sorted(voters, key=lambda x: x.bribe_price / x.weight)
else:
voters_sorted = sorted(voters, key=lambda x: (x.bribe_price / x.weight) /
(m - x.pref.index(true_winner) - 1 + 1e-20))

for i, voter in enumerate(voters_sorted):
valid, new_pref = valid_bribee(voter, true_profile, is_r_approval)
change their bribed profile if we have enough money to bribe
if valid is not None and (briber.budget >= voter.bribe_price
or math.isclose(briber.budget, voter.bribe_price)):

voter.bribed = True

voter.bribe_pref = new_pref

briber.budget -= voter.bribe_price

new_profile = find_winner(candidates, voters, is_r_approval)
if new_profile[0] != true_winner:

bribe was successful, changed winner

return True

return False

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERN

def reset_voters(voters):
for v in voters:
v.defended = False
v.bribed = False
v.bribe_pref = None
return

fifth: time & plot!

is_r_approval = False

m=5
r=3
candidates = [i for i in range(m)]

times = []

for n in range(1l, 201):
voters = [Voter() for i in range(n)]
true_winner_list = find_winner(candidates, voters, is_r_approval)
true_winner = true_winner_list[0]

0
0

total_award_price

total_bribe_price

for v in voters:
total_award_price += v.award_price
total_bribe_price += v.bribe_price

start = time.time()

done = False
for attack_money in range(int(total_bribe_price)+1, -1, -1):
for defense_money in range(O, int(total_award_price)+2):
defend(candidates, voters, defense_money, is_r_approval)
bribe_success = bribe(candidates, voters, attack_money, is_r_approval)

if not bribe_success:
done = True
break

reset_voters(voters)

if done:
break

end = time.time()

times.append(end - start)

16 KAYLA HUANG, AUSTIN LI, NATHAN SUN, AND CHRISTINA XIAO

ns = np.arange(1l, len(times)+1)

plt.rcParams["figure.figsize"] = (12, 9)

plt.plot(ns, times)

plt.xlabel(’N (number of voters)’)

plt.ylabel(’Time (in sec)’)

plt.title("Approximate Destructive Protection Problem Time Complexity, for ___")
plt.show()

COMPUTATIONAL COMPLEXITY CHARACTERIZATION OF PROTECTING ELECTIONS FROM BRIBERN
KayrLa HuanG
Email address: kaylahuang@college.harvard.edu

AUSTIN L1
Email address: awli@college.harvard.edu

NATHAN SUN
Email address: nsun@college.harvard.edu

CHRISTINA XIAO
Email address: christinaxiao@college.harvard.edu

